
350 East Plumeria Drive

San Jose, CA 95134

USA

May 2013

Part Number TBD

v1.0

Essentials of the Java
Programming Language
A Hands-On Guide
by Monica Pawlan

© Sun Microsystems. Inc. All rights reserved

Essentials of the Java Programming Language
If you are new to programming in the Java programming language (Java) and have some
experience with other languages, this tutorial could be for you. It walks through how to use
the JavaPlatform software to develop a basic network application that uses common Java
platform features. This tutorial is not comprehensive, but instead takes you on a straight and
uncomplicated path through the more common features available in the Java platform. This
tutorial is a learning tool and should be viewed as a stepping-stone for persons who find the
currently available materials a little too overwhelming to start with.

To reduce your learning curve, this tutorial begins with a simple program in Lesson 1,
develops the program by adding new features in every lesson, and leaves you with a general
electronic commerce application, and a basic understanding of object-oriented programming
concepts in Lesson 15. Unlike other more reference-style texts that give you a lot of
definitions and concepts at the beginning, this tutorial takes a practical approach. New
features and concepts are described when they are added to the example application.

Please note the final application is for instructional purposes only and would need more work
to make it production worthy. By the time you finish this tutorial, you should have enough
knowledge to comfortably go on to other Java programming language learning materials and
continue your studies.

If you have no programming experience at all, you might still find this tutorial helpful; but you
also might want to take an introductory programming course before you proceed.

Lessons 1 through 8 explain how applications, applets, and servlets/JavaServer Pages are
similar and different, how to build a basic user interface that handles simple user input, how
to read data from and write data to files and databases, and how to send and receive data
over the network.

Lessons 9 through 15 walk you through socket communications, building a user interface
using more components, grouping multiple data elements as one unit (collections), saving
data between program invocations (serialization), and internationalizing a program. Lesson
15 concludes the series with basic object-oriented programming concepts.

This tutorial covers object-oriented concepts at the end after you have had practical
experience with the language so you can relate the object-oriented concepts to your
experiences.

Appendix A presents the complete and final code for this tutorial.

JavaBean Technology

JavaBean technology, which lets you create portable program components that follow
simple naming and design conventions, is not covered here. While creating a simple
JavaBean component is easy, understanding JavaBeans features requires knowledge of
such things as properties, serialization, events, and inheritance. When you finish these
lessons, you should have the knowledge you need to go on to a good text on JavaBeans
technology and continue your studies.
2

Essentials of the Java Programming Language
Acknowledgements

Many Java Developer Connection (JDC) members contributed comments and
suggestions to this material when the first eight lessons appeared on the JDC website in
March and April of 1999, and the last eight appeared the following July. With those
suggestions and many others received from the review team at Addison-Wesley
Longman, the material has evolved into an introduction to Java programming language
features for persons new to the platform and unfamiliar with the terminology.

I also relied on the help of co-workers, friends, and family for whose help I am very
grateful. I would like to thank my friend and co-worker, Mary Aline, for providing the
French translations for the Chapter 13, Internationalization chapter, and my best friend
and husband Jeffrey Pawlan (WA6KBL) who worked with Wolf Geihe (DJ4OA) in
Germany to provide the German translations for that same chapter. I do not want to
forget Stephanie Wilde, our contract editor at the JDC, who helped with copy editing on
the early versions of this material posted to the JDC website. And Dana Nourie, our JDC
HTML editor, who in her quest to learn Java, provided unending enthusiasm for this work
and contributed to the section on how to set the CLASSPATH environment variable on the
Windows platform.

Special thanks go to Allan Jacobs and Orson Alvarez who went through the example
code and text making a number of excellent suggestions to improve them, and to Calvin
Austin whose helpful suggestions at the outset made the earlier lessons more
understandable and accessible to novice programmers. Finally, thanks to Danesh
Forouhari who made some excellent suggestions to improve the graphics, and who
encouraged me to include a short section on JavaServer Pages technology. And I cannot
forget my manager, Margaret Ong, who stood behind me all of the way in this effort.

Lastly, I want to acknowledge various individual reviewers within Sun Microsystems, Inc.,
whose expert knowledge in their respective areas was an invaluable asset to completing
the examples: Rama Roberts (object-oriented programming), Dale Green
(internationalization), Alan Sommerer (JAR file format and packages), Joshua Bloch
(collections), and Tony Squier (databases).
3

Contents
Chapter 1 Compile and Run a Simple Program

About the Java Platform . 11
Set Up Your Computer . 11
Write a Program . 12
Compile the Program . 12
Run the Program . 12
Code Comments. 12

Double Slashes . 13
C-Style Comments . 13
Doc Comments. 13

API Documentation . 13
Exercises . 14

Chapter 2 Building Applications

Application Structure and Elements . 16
Fields and Methods . 17
Constructors . 20
Exercises . 21

Chapter 3 Building Applets

Application to Applet. 23
Run the Applet . 24
Applet Structure and Elements. 24

Extend a Class . 24
Behavior . 25
Appearance . 27

Packages . 27
Exercises . 28

Chapter 4 Building a User Interface

Project Swing APIs . 30
Import Statements . 31
Class Declaration . 32
Instance Variables . 33
Constructor . 33
Action Listening . 35
Event Handling . 35
Main Method. 36
4

Essentials of the Java Programming Language
Exercises: Applets Revisited .37
Applet and Application Differences. .38

Chapter 5 Building Servlets

About the Example .40
HTML Form .40
Servlet Code. .41

Class and Method Declarations .42
Method Implementation .43

JavaServer Pages Technology. .44
HTML Form. .44
JSP Page .44

Exercises .46

Chapter 6 Access and Permissions

File Access by Applications .48
Constructor and Instance Variable Changes .48
Method Changes .49
System Properties .52
File.separatorChar .52
Exception Handling. .52

File Access by Applets .54
 Grant Applets Permission .56

Creating a Policy File .56
Run an Applet with a Policy File .56

Restrict Applications .57
File Access by Servlets .58
Exercises .58
Code for This Lesson .58

FileIO Program .58
FileIOAppl Program .61
FileIOServlet Program .63
AppendIO Program. .64

Chapter 7 Database Access and Permissions

Database Setup .69
Create Database Table .69
Database Access by Applications .69
Establish a Database Connection .70
Database Access by Applets .73

JDBC Driver .73
JDBC-ODBC Bridge with ODBC Driver .75

 Database Access by Servlets .76
Exercises .76
Code for This Lesson .77

Dba Program .77
5

Essentials of the Java Programming Language
DbaAppl Program .79
DbaOdbAppl Program .82
DbaServlet Program .84

Chapter 8 Remote Method Invocation

RMI Scenario .87
About the Example .87

Program Behavior. .88
File Summary .89
Compile the Example .90
Start the RMI Registry .91
Start the Server. .92
Run the RMIClient1 Program .93
Run the RMIClient2 Program .93

RemoteServer Class .94
Send Interface .95
RMIClient1 Class .96

actionPerformed Method .96
main Method. .96

RMIClient2 Class .97
actionPerformed Method .97
main Method. .97

Exercises .98
Code for This Lesson .98

RMIClient1 Program .98
RMIClient2 Program .100
RemoteServer Program .102
Send Interface .103

Chapter 9 Socket Communications

What are Sockets and Threads? .105
About the Examples .105

Example 1: Client-Side Behavior .106
Example 1: Server-Side Behavior. .106
Example 1: Compile and Run. .106
Example 1: Server-Side Program. .107
Example 1: Client-Side Program .108
Example 2: Multithreaded Server Example .110

Exercises .113
Code for This Lesson .113

SocketClient Program. .113
SocketServer Program .115
SocketThrdServer Program .117

Chapter 10 Object-Oriented Programming

Object-Oriented Programming .122
6

Essentials of the Java Programming Language
Classes. .122
Objects .123
Well-Defined Boundaries and Cooperation .123
Inheritance and Polymorphism .124

Data Access Levels .126
Classes. .126
Fields and Methods .126
Global Variables and Methods .127

Your Own Classes .127
Well-Defined Boundaries and Cooperation .127
Inheritance .128
Access Levels. .128

Exercises .129
Setting Access Levels. .129
Organizing Code into Functional Units .129

Chapter 11 User Interfaces Revisited

About the Example .131
Fruit Order Client (RMIClient1) .131
Server Program .132
View Order Client (RMIClient2) .132
Compile and Run the Example .132
Fruit Order (RMIClient1) Code .134
Instance Variables .135
Constructor .135
Event Handling .137
Cursor Focus .139
Converting Strings to Numbers and Back. .140

Server Program Code. .141
Send Interface .141
RemoteServer Class. .141

View Order Client (RMIClient2) Code. .142
Exercises .143

Calculations and Pressing Return .143
Extra Credit. .144

Code for This Lesson .144
RMIClient1 Program .144
RMIClient2 Program .149
RMIClient1 Improved Program .152

Chapter 12 Develop the Example

Track Orders. .159
sendOrder Method .159
getOrder Method. .160
Other Changes to Server Code .161

Maintain and Display a Customer List .162
About Collections .162
7

Essentials of the Java Programming Language
Create a Set .163
Access Data in a Set .164
Display Data in a Dialog Box .165

Exercises .166
Code for This Lesson .167

RemoteServer Program .167
RMIClient2 .169

Chapter 13 Internationalization

Identify Culturally Dependent Data. .174
Create Keyword and Value Pair Files. .175

German Translations .177
French Translations .178

Internationalize Application Text. .179
Instance Variables .179
main Method. .179
Constructor .181
actionPerformed Method .182

Internationalize Numbers .182
Compile and Run the Application .183

Compile. .183
Start the RMI Registry .183
 UNIX .183
Win32 .183
Start the Server. .184
Start the RMIClient1 Program in German. .184
Start the RMIClient2 Program in French. .184

Exercises .185
Code for This Lesson .186

RMIClient1 .186
RMIClient2 .191

Chapter 14 Packages and JAR File Format

Set up Class Packages .197
Create the Directories. .197
Declare the Packages. .198
Make Classes and Fields Accessible .198
Change Client Code to Find the Properties Files199

Compile and Run the Example. .199
Compile. .199
Start the RMI Registry .200
Start the Server. .200
Start the RMIGermanApp Program .201
Start the RMIClient2 Program in French. .201
Using JAR Files to Deploy .201
Fruit Order Set of Files (RMIClient1) .203
View Order Set of Files. .204
8

Essentials of the Java Programming Language
Exercises .205

Appendix A Code Listings

RMIClient1 .207
RMIClient2 .212
DataOrder. .217
Send .217
RemoteServer .218
RMIFrenchApp .220
RMIGermanApp .225
RMIEnglishApp. .230
RMIClientView Program .234
RMIClientController Program .238

Index
9

1
1. Compile and Run a Simple Program
If you are new to the Java programming language, you are probably wondering what all the talk
is about. You might have heard of applets, applications, and servlets/JavaServer Pages, but are
not sure what they are and when you would want to write an applet as opposed to an application
or servlet. Or maybe you are just curious about the basic set of application programming
interfaces (APIs) available in the platform and do not want to read a lot of pages to find out what
is available.

This short tutorial gives you a hands-on introduction to the Java programming language. It starts
with compiling and running the simple program presented in this lesson, adds new features with
explanations in each successive lesson, and introduces APIs commonly used in general
programs.

This lesson covers the following topics:

• About the Java Platform

• Set Up Your Computer

• Write a Program

• Compile the Program

• Run the Program

• Code Comments

• API Documentation

• Exercises

If you are new to Java, you might have heard of applets, applications, servlets, and JavaServer
Pages, but are not sure what they are and how they differ. Or maybe you are just curious about
the basic set of application programming interfaces (APIs) available in the platform and do not
want to read a lot of pages to learn the basics.

This short tutorial gives you a hands-on introduction to Java. It starts with compiling and running
the simple program presented in this lesson, adds new features with explanations in each
successive lesson, and introduces APIs commonly used in general programs.

This lesson covers the following topics:

• About the Java Platform

• Set Up Your Computer

• Write a Program

• Compile the Program

• Run the Program

• Code Comments

• API Documentation

• Exercises
10

 Essentials of the Java Programming Language
About the Java Platform

Before you can write and compile programs, you need to understand what the Java platform
is and configure your computer to run the programs. The Java platform consists of the Java
APIs and the Java Virtual Machine (JVM).

Java APIs are libraries of compiled code that you can use in your programs. They enable you
to add ready-made and customizable functionality to save you programming time. The simple
program in this lesson uses a Java API to print a line of text to the console. The printing
capability is provided in the API ready for you to use. You supply the text to be printed.

Figure 1 shows the Java platform architecture. The JVM sits on top of your native operating
system. Your program sits on top of the JVM and calls compiled code from the API libraries
that live within the JVM.

Java Virtual Machine

Java Program

Java APIs

Your Computer System

Figure 1. Java Platform Architecture

Programs written in Java are run (or interpreted) by another program called the JVM. If you
have used Visual Basic or another interpreted language, this concept is probably familiar to
you. Rather than running directly on the native operating system, the program is interpreted
by the JVM for the native operating system. This means that any computer system with a
JVM installed can run programs written in Java regardless of the computer system on which
the applications were originally developed.

Set Up Your Computer

Before you can write and run the simple program in this lesson, you need to install the Java
platform on your computer system. The Java platform is available free of charge from the
oracle.com website. Choose the correct Java SE software for your operating system and
refer to the installation instructions.
Compile and Run a Simple Program

11

oracle.com

 Essentials of the Java Programming Language
Write a Program

Use the text editor of your choice to create a text file with the following text (source code).
Name the text file ExampleProgram.java. Programs written in Java are case sensitive.

//A Very Simple Example

class ExampleProgram {

public static void main(String[] args){

 System.out.println(“I’m a Simple Program”);

}

}

Compile the Program

When you compile a Java program, the source code is converted to byte codes, which are
platform-independent instructions for the JVM.

Execute the Java compiler as follows:

javac ExampleProgram.java

Run the Program

Once your program successfully compiles, you can interpret and run the program on any
JVM. The JVM byte code interpreter converts the Java byte codes to platform-dependent
machine codes so that you computer or browser can understand and run the program.

Execute the java command as follows to run the example program:

java ExampleProgram

The following commands show the entire sequence to compile and run the example program:

> javac ExampleProgram.java

> java ExampleProgram.java

I’m a Simple Program

Code Comments

Code comments are placed in source files to describe what is happening in the code to
someone who might be reading the file, to comment-out lines of code, to isolate the source of
a problem for debugging purposes, or to generate API documentation. To accommodate
these needs, Java supports three kinds of comments: double slashes, C-style, and doc
comments.
Compile and Run a Simple Program

12

 Essentials of the Java Programming Language
Double Slashes

You can use C++-style double slashes (//) to tell the compiler to treat everything from the
slashes to the end of the line as text.

//A Very Simple Example

class ExampleProgram {

public static void main(String[] args){

System.out.println(“I’m a Simple Program”);

}

}

C-Style Comments

Instead of double slashes, you can use C-style comments (/* */) to enclose one or more lines
of code to be treated as text.

/* These are C-style comments */

class ExampleProgram {

public static void main(String[] args){

System.out.println(“I’m a Simple Program”);

}

}

Doc Comments

To generate documentation for your program, use doc comments (/** */) to enclose lines
of text for the javadoc tool to find. The javadoc tool locates the doc comments embedded
in source files and uses those comments to generate API documentation.

/** This class displays a text string on the console. */

class ExampleProgram {

 public static void main(String[] args){

System.out.println(“I’m a Simple Program”);

}

}

API Documentation

The Java platform installation includes API Documentation, which describes the APIs
available for you to use in your programs. By default, the files are stored in a src.zip file
beneath the directory where you installed the platform.
Compile and Run a Simple Program

13

 Essentials of the Java Programming Language
Exercises

1 What is the name of the program that runs (or interprets) programs written in Java?

2 Name the interpreter command, and explain what it does.

3 Name the compiler command, and explain what it does.
Compile and Run a Simple Program

14

2
2. Building Applications
All applications, applets, and servlets written in Java have almost the same structure and share
many common elements. They also have some differences. This lesson describes the structure
and elements common to applications.

This lesson covers the following topics:

• Application Structure and Elements

• Fields and Methods

• Constructors

• Exercises
15

 Essentials of the Java Programming Language
Application Structure and Elements

You crate an application from classes. A class defines class fields to store the data, and class
methods to work on the data. A class is similar to a struct in the C and C++ languages in
that it can store related data of different types, but the big difference between a class and a
struct is that a class also defines accessor methods to work on its data. The C and C++
languages separate functions from the struct that defines the data.

Every application needs one class with a main method. The class with the main method is
the entry point for the program and is the class name passed to the java interpreter
command to run the application. The code in the main method executes first when the
program starts.

The ExampleProgram.java code from Chapter 1 has no fields or accessor methods.
Because ExampleProgram is the only class in the program, it has a main method.

 class ExampleProgram {

 public static void main(String[] args){

 System.out.println(“I’m a Simple Program”);

}

}

In the above code, the public static void keywords mean the JVM interpreter can call
the program main method to start the program (public) without creating an instance of the
class (static), and the program does not return data to the JVM interpreter (void) when it
ends.

An instance of a class has data members and methods as defined by that class. While the
class describes the data and methods to work on the data, a class instance acquires and
works on the data.

Figure 2 shows three instances of the StoreData class by the names: FirstInstance,
SecondInstance and ThirdInstance. While class instances share the same definition
(class), they are separate from each other in that each instance can acquire and work on
different data.

StoreData class

FieldA

getFieldA
setField A

FirstInstance
FieldA = 12

SecondInstance
FieldA = 12

ThirdInstance
FieldA = 12

Figure 2. Class Instances
Building Applications

16

 Essentials of the Java Programming Language
It is not always necessary to create a class instance to call methods and access fields in a
class. An instance of the ExampleProgram class is never created because it has no fields to
access and only the one static main method to call. The main method for
ExampleProgram just calls println, which is a static method in the System class. The
java.lang.System class, among other things, provides functionality to send text to the
terminal window where the program was started. It has all static fields and methods.

The Java platform lets a program call a method in a class without creating an instance of that
class as long as the method being called is static. Just as the JVM interpreter command
can call the static main method in the ExampleProgram class without creating an
instance of it, the ExampleProgram class can call the static println method in the
System class without creating an instance of the System class.

As you explore Java, you will come across library classes such as System, Math, or Color
that contain all or some static methods and fields, and you might find that static
methods and fields can make sense when you write your own classes.

For example, the Color class provides ready access to common colors such as red, blue,
and magenta through its static fields, and you can get custom colors by creating a Color
class instance and passing specific values to the Color class constructor. For more
information on constructors, see Constructors .

Fields and Methods

The LessonTwoA.java program alters the simple example to store the text string in a
static field called text. The text field is static so that its data can be accessed directly
by the static println method without creating an instance of the LessonTwoA class.

class LessonTwoA {

//Static field added

static String text = “I’m a Simple Program”;

public static void main(String[] args){

System.out.println(text);

}

}

The LessonTwoB.java and LessonTwoC.java programs add a getText method to the
program to retrieve and print the text. The LessonTwoB program accesses the non-static
text field with the non-static getText method. Non-static methods and fields are called
instance methods and fields. This approach requires that an instance of the LessonTwoB
class be created in the main method.

The example also includes a static text field and a non-static instance method to retrieve it.
A non-static method can access both static and non-static fields.
Building Applications

17

 Essentials of the Java Programming Language
class LessonTwoB {

//Static and non-static fields

String text = “I’m a Simple Program”;

static String text2 = “I’m static text”;

//Methods to access data in the fields

 String getText(){ return text; }

 String getStaticText(){return text2;}

 public static void main(String[] args){

LessonTwoB progInstance = new LessonTwoB();

 String retrievedText = progInstance.getText();

 String retrievedStaticText = progInstance.getStaticText();

 System.out.println(retrievedText);

 System.out.println(retrievedStaticText);

}

}

The LessonTwoC program accesses the static text field with the static getText
method. Static methods and fields are called class methods and fields. This approach allows
the program to call the static getText method directly without creating an instance of the
LessonTwoC class.

 class LessonTwoC {

static String text = “I’m a Simple Program”;

//Accessor method

static String getText(){

 return text;

}

public static void main(String[] args){

String retrievedText = getText();

.out.println(retrievedText);

 }

}

Class methods can operate only on class fields, but instance methods can operate on class
and instance fields. The difference is that there is only one copy of the data stored in a class
field, but each instance has its own copy of the data stored in an instance field.

For example, the following ExampleClass class definition has one static field, one instance
field, and two accessor methods to set the value for each field.

class ExampleClass {

static FieldA = 36;

FieldB=0;

 return text;
Building Applications

18

 Essentials of the Java Programming Language
private void setFieldA (value){

FieldA = value;

}

private void setFieldB (value) {

FieldB = value;

}

public static void main(String[] args){

// Do something

 }

}

If another class creates two instances of ExampleClass, then, FieldA has the value 36
and FieldB has the value 0 for both instances. Figure 3 shows the following:

• If another class calls setFieldA on the first instance of ExampleClass with a value of
25, then the FieldA value in both instances changes to 25.

• If another class calls setFieldB on the first instance of ExampleClass with a value of
50, then the FieldB value in the first instance changes to 25, but the FieldB value in
the other instances remains 0.

AnotherClass

Create instance 1

Create instance 2

Call setFieldA(25) on
instance 1

Call SetFieldB(50) on
instance 2

Instance 1

FieldA=25
FieldB = 0

Instance 2

FieldA=25
FieldB = 50

Figure 3. Change Class and Instance Field Values
Building Applications

19

 Essentials of the Java Programming Language
Constructors

A constructor is a special method that prepares the new instance for use by initializing the
instance fields. The constructor always has the same name as the class and no return type.

If you do not write your own constructor, the compiler adds an empty constructor. The empty
constructor is called the default constructor and initializes all non-initialized fields and
variables to zero. A constructor might or might not have parameters depending on whether
the class provides its own initialization data or gets it from the calling method.

Figure 4 shows the constructor, accessor methods, and main method.

String Field

Constructor

Set data method

Get data method

main method

Figure 4. Constructor

The LessonTwoD program converts the LessonTwoB program to use a constructor without
parameters to initialize the text string field.

class LessonTwoD{

String text;

//Constructor

LessonTwoD(){

text = “I’m a Simple Program”;

}

String getText(){

return text;

}

 public static void main(String[] args){

 LessonTwoD progInst = new LessonTwoD();

 String retrievedText = progInst.getText();

 System.out.println(retrievedText);

}

}

Building Applications

20

 Essentials of the Java Programming Language
The LessonTwoE program passes the string to be printed to the constructor as a parameter:

class LessonTwoE{

String text;

//Constructor

LessonTwoE(String message){

text = message;

}

String getText(){

return text;

}

 public static void main(String[] args){

 LessonTwoE progInst = new LessonTwoE("I’m a simple program");

 String retrievedText = progInst.getText();

 System.out.println(retrievedText);

}

}

Exercises

1 An application must have one class with which kind of method?

2 What is the difference between class and instance fields?

3 What are accessor methods?
Building Applications

21

3
3. Building Applets
Like applications, you create applets from classes. However, applets do not have a main
method as an entry point, do have several methods to control specific aspects of applet
execution, and while applications run in the JVM installed on a computer system, applets run in
the JVM installed in a web browser. You can also run an applet in a special tool for testing
applets called appletviewer.

This lesson converts one of the applications from Chapter 2, Building Applications to an applet,
describes the structure and elements common to applets, and shows you how to use the
appletviewer tool.

This lesson covers the following topics:

• Application to Applet

• Run the Applet

• Applet Structure and Elements

• Packages

• Exercises
22

 Essentials of the Java Programming Language
Application to Applet

The following code is the applet equivalent to the LessonTwoB example in Chapter 2.
Figure 5 shows how the running applet looks. See Run the Applet for information on the
structure and elements of the applet code.

Figure 5. A Simple Applet

import java.applet.Applet;

import java.awt.Graphics;

import java.awt.Color;

//Make applet class public

public class SimpleApplet extends Applet{

String text = "I'm a simple applet";

public void init() {

setBackground(Color.cyan);

}

public void start() { System.out.println("starting..."); }

public void stop() { System.out.println("stopping..."); }

public void destroy() { System.out.println("preparing to unload..."); }

public void paint(Graphics g){

System.out.println("Paint");

g.drawRect(0, 0, getSize().width -1, getSize().height -1);

g.setColor(Color.red);

g.drawString(text, 15, 25);

}

}
Building Applets

23

 Essentials of the Java Programming Language
The SimpleApplet class is public so that the program that runs the applet (a browser or
the appletviewer tool), which is not local to the program, can execute it.

Make sure to compile the applet:

javac SimpleApplet.java

Run the Applet

To execute the applet, create an HTML file with the Applet tag as follows:

<HTML>

<BODY>

<APPLET CODE=SimpleApplet.class WIDTH=200 HEIGHT=100>

</APPLET>

</BODY>

</HTML>

An easy way to run the applet is to use the appletviewer tool. The following
appletviewer command executes the simpleApplet.html file, which contains the
above HTML code:

 appletviewer simpleApplet.html

Applet Structure and Elements

The Java Applet class has what you need to design the appearance and manage the
behavior of an applet. The Applet class provides a graphical user interface (GUI)
component called a Panel and a number of methods. To create an applet, you extend the
Applet class and implement the appearance and behavior you want.

The applet appearance is created by drawing onto the Panel or adding other GUI
components such as push buttons, scrollbars, or text areas to the Panel. The applet
behavior is defined by implementing its methods.

Extend a Class

Most classes of any complexity extend other classes. To extend another class means to take
the data and behavior from the parent class and add more data and/or behavior to the child
class. In the C++ language, this is called subclassing.

The class being extended is the parent class, and the class doing the extending is the child
class. Another way to say this is the child class inherits the fields and methods of its parent or
chain of parents. Child classes either call or override their inherited methods. Java allows
only single inheritance where a child class is limited to one parent.
Building Applets

24

 Essentials of the Java Programming Language
Figure 6 shows the class hierarchy for the SimpleApplet class. The Object class is the
parent of all Java classes not explicitly extended from any other class.

Object

Containert

Panel

Applet

SimpleApplet

Figure 6. Extending the Applet Class

The Applet class provides the init, start, stop, destroy, and paint methods you
saw in the example applet code. The SimpleApplet class must override these methods to
do what the SimpleApplet class needs them to do because the Applet class provides no
functionality for these methods.

However, the Component class does provide functionality for the set Background
method, which is called in the init method. The call to setBackground is an example of
calling a method inherited from a parent class instead of overriding a method inherited from a
parent class.

You might wonder why Java provides methods without implementations. It is to provide
conventions for everyone to use for consistency across Java APIs. If everyone wrote their
own method to start an applet, for example, but gave it a different name such as begin or
go, the applet code would not be interoperable with other programs, tools, and browsers, or
portable across multiple platforms. For example, both Netscape and Internet Explorer know
how to look for the init and start methods.

Behavior

An applet is controlled by the software that runs it. Usually, the underlying software is a
browser, but it can also be the appletviewer tool as you saw in the example. The
underlying software controls the applet by calling the methods the applet inherits from the
Applet class. You do not have to implement all of these methods. You implement only the
methods you need.
Building Applets

25

 Essentials of the Java Programming Language
The init Method

The init method is called when the applet is first created and loaded by the underlying
software. This method performs one-time operations the applet needs to function such as
creating the user interface or setting the font. In the example, the init method initializes the
text string and sets the background color.

public void init() {

text = "I'm a simple applet";

setBackground(Color.cyan);

}

The start Method

The start method is called when the applet is visited such as when the user goes to a web
page with an applet on it. The example prints a string to the console to tell you the applet is
starting. In a more complex applet, the start method would do things required at the start of
the applet such as begin animation or play sounds.

public void start() {

System.out.println("starting...");

}

After the start method executes, the platform calls the paint method to draw to the
applet's Panel. A thread is a single sequential flow of control within the applet, and every
applet is made up of multiple threads. Applet drawing methods are always called from a
dedicated drawing and event-handling thread.

The stop and destroy Methods

The stop method stops the applet when the applet is no longer on the screen such as when
the user goes to another web page. The example prints a string to the console to tell you the
applet is stopping. In a more complex applet, this method should do things like stop
animation or sounds. The destroy method is called when the browser exits. Your applet
should implement this method to do final cleanup.

public void stop() {

System.out.println("stopping...");

}

public void destroy() {

System.out.println("preparing to unload...");

}
Building Applets

26

 Essentials of the Java Programming Language
Appearance

The Applet class is a Panel component that inherits a paint method from its parent
Container class. To draw onto the applet's Panel, implement the paint method to do the
drawing. The Graphics object passed to the paint method defines a graphics context for
drawing on the Panel. The Graphics object has methods for graphical operations such as
setting drawing colors, and drawing graphics, images, and text. The paint method for the
SimpleApplet draws the I'm a simple applet string in red inside a blue rectangle.

public void paint(Graphics g){

System.out.println("Paint");

//Set drawing color to blue

g.setColor(Color.blue);

 //Specify the x, y, width and height for a rectangle

 g.drawRect(0, 0,
 getSize().width -1,
 getSize().height -1);

 //Set drawing color to red

 g.setColor(Color.red);

 //Draw the text string at the (15, 25) x-y location

g.drawString(text, 15, 25);

}

Packages

The applet code also has three import statements at the top that explicitly import the
Applet, Graphics, and Color classes in the java.applet and java.awt API library
packages for use in the applet. Applications of any size and all applets access ready-made
Java API classes organized into packages located elsewhere on the local or networked
system. This is true whether the Java API classes come in the Java platform download, from
a third-party, or are classes you write yourself and store in a directory separate from the
program.

There are two ways to access these ready-made libraries: import statements, which you
saw in the code in Application to Applet , and full package names. The following code
rewrites the example applet to use full package names instead of import statements. A
compiled class in one package can have the same name as a compiled class in another
package. The package name differentiates the two classes. For example
java.lang.String and mypackage.String reference two completely different classes.
Building Applets

27

 Essentials of the Java Programming Language
public class SimpleApplet extends java.applet.Applet{

String text = "I'm a simple applet";

public void init() {

text = "I'm a simple applet";

setBackground(java.awt.Color.cyan);

}

public void start() {

System.out.println("starting...");

}

public void stop() {

System.out.println("stopping...");

}

public void destroy() {

System.out.println("preparing to unload...");

}

public void paint(java.awt.Graphics g){

System.out.println("Paint");

g.setColor(Color.blue);

g.drawRect(0, 0,
getSize().width -1,
getSize().height -1);

g.setColor(java.awt.Color.red);

g.drawString(text, 15, 25);

}

}

Note: The examples do not need a package declaration to call
System.out.println because the System class is in the default
java.lang package.

Exercises

1 What are some differences between applications and applets?

2 Name the applet methods that control the applet’s behavior.

3 Describe two ways to access API library classes organized into packages from your
programs.
Building Applets

28

4
4. Building a User Interface
This lesson adds a user interface to the LessonTwoD application from Chapter 2, Building
Applications. The user interface is built with the Java Foundation Classes (JFC) Project Swing
(Project Swing) APIs. Project Swing APIs provide a wide-range of classes for building friendly
and interesting user interfaces and handling action events from user inputs such as mouse clicks
and keyboard presses.

This is a very basic introduction to Project Swing that is developed more in Chapter 11, User
Interfaces Revisited.

This lesson covers the following topics:

• Project Swing APIs

• Import Statements

• Class Declaration

• Instance Variables

• Constructor

• Action Listening

• Event Handling

• Main Method

• Exercises: Applets Revisited

• Applet and Application Differences
29

 Essentials of the Java Programming Language
Project Swing APIs

The Project Swing API provides the building blocks (components) for creating interesting and
friendly user interfaces. You can choose from basic controls such as buttons and
checkboxes, components that contain other components such as frames and panels, and
information displays such as labels and text areas.

When you build a user interface, you place basic components and information displays inside
container components. If the user interface has many elements, then place container
components within other container components. Ultimately, every applet and application has
a top-level container to hold all of its user interface components.

An applet’s top-level container is a browser window, and an application’s top-level container
is a frame. A frame component is a window that provides a title, banner, and methods to
manage the appearance and behavior of the window. An applet relies on the browser for this
type of functionality. An applet can have only one top-level panel, but an application can have
many top-level panels.

The Project Swing code for this lesson builds the simple application in Figure 7. The frame
(window) on the left appears when you start the application, and the frame on the right
appears when you click the button. Click again to go back to the original frame on the left.

Figure 7. Project Swing Application
Building a User Interface

30

 Essentials of the Java Programming Language
Import Statements

The import statements in the SwingUI.java code indicate which Java API packages and
classes the program uses. The first two lines import specific classes in the Abstract Window
Toolkit (awt) package, and the third line imports the event package within the awt package.

Your code is clearer to someone else reading it when you import exactly the classes and
packages you need and no others. But, if you use a lot of classes in one package, it is
probably easier to import an entire package including its subpackages as shown by the fourth
import javax.swing statement.

The Abstract Window Toolkit (AWT) is an API library that provides classes for building a user
interface and handling action events. However, Project Swing extends the AWT with a full set
of GUI components and services, pluggable look and feel capabilities, and assistive
technology support. Project Swing components include Java-language versions of the AWT
components such as buttons and labels, and a rich set of higher-level components such as
list boxes and tabbed panes. Because of the enhanced functionality and capabilities in the
Project Swing class libraries, this tutorial focuses on the Project Swing APIs.

import java.awt.Color;

import java.awt.BorderLayout;

import java.awt.event.*;

import javax.swing.*;

//Class Declaration

class SwingUI extends JFrame implements ActionListener {

//Instance variables

JLabel text, clicked;

JButton button;

JPanel panel;

private boolean _clickMeMode = true;

//Constructor

SwingUI(){ //Begin Constructor

text = new JLabel(“I’m a Simple Program”);

button = new JButton(“Click Me”);

button.addActionListener(this);

panel = new JPanel();

panel.setLayout(new BorderLayout());

panel.setBackground(Color.white);

getContentPane().add(panel);

panel.add(BorderLayout.CENTER, text);

panel.add(BorderLayout.SOUTH, button);

} //End Constructor
Building a User Interface

31

 Essentials of the Java Programming Language
//Event handling

public void actionPerformed(ActionEvent event){

Object source = event.getSource();

if (source == button) {

if (_clickMeMode) {

text.setText("Button Clicked");

button.setText("Click Again");

_clickMeMode = false;

} else {

text.setText("I’m a Simple Program");

button.setText("Click Me");

_clickMeMode = true;

}

}

}

//main method

public static void main(String[] args){

SwingUI frame = new SwingUI();

frame.setTitle(“Example”);

WindowListener l = new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

};

frame.addWindowListener(l);

frame.pack();

frame.setVisible(true);

 }

}

Class Declaration

The class declaration indicates that the top-level frame for the application’s user interface
extends a JFrame class that implements the ActionListener interface. The Project
Swing JFrame class extends the Frame class, which is part of the AWT APIs. Project Swing
component classes have the same name as their AWT counterparts prefixed with the letter J.

class SwingUI extends JFrame implements ActionListener{
Building a User Interface

32

 Essentials of the Java Programming Language
The ActionListener interface, like all other interfaces in Java, defines a set of methods,
but does not implement their behavior. Instead, you provide the interface method
implementations for the class that implements the interface.

The Java platform lets a class extend only one class, which in this case is JFrame, but lets it
implement any number of interfaces. In this example, the SwingUI class implements the
ActionListener interface only.

When a program class implements an interface, it must provide behavior for all methods
defined in that interface. The ActionListener interface has only one method, the
actionPerformed method. So, the SwingUI class must implement the
actionPerformed method, which is covered in Event Handling .

Instance Variables

These next lines in the SwingUI class declare the Project Swing component classes the
SwingUI class uses. These are instance variables (or fields) that can be accessed by any
method in the instantiated class. In this example, they are built in the SwingUI constructor
and accessed in the actionPerformed method implementation.

The private boolean variable is an instance variable that is only accessible to the
SwingUI class. It is used in the actionPerformed method to find out whether or not the
button has been clicked.

JLabel text;

JButton button;

JPanel panel;

//Start out waiting to be clicked

private boolean _clickMeMode = true;

Constructor

The constructor creates the user interface components, adds the components to the JPanel
object, adds the panel to the frame, and makes the JButton components action listeners,
which is covered in Action Listening . The JFrame object is created in the main method
when the program starts.

SwingUI(){

text = new JLabel(“I’m a Simple Program”);

button = new JButton(“Click Me”);

//Add button as an event listener

 button.addActionListener(this);

//Create panel

panel = new JPanel();
Building a User Interface

33

 Essentials of the Java Programming Language
//Specify layout manager and background color

panel.setLayout(new BorderLayout());

panel.setBackground(Color.white);

//Add label and button to panel

getContentPane().add(panel);

panel.add(BorderLayout.CENTER, text);

panel.add(BorderLayout.SOUTH, button);

}

When the JPanel object is created, the layout manager and background color are specified.
The layout manager in use determines how user interface components are arranged in the
display area. The code uses the BorderLayout layout manager, which arranges user
interface components in the five areas shown in Figure 8.

Figure 8. Border Layout

To add a component to the layout, specify the area with the static fields provided in the
BorderLayout class. The next code segment adds components to the panel in the center
and south regions of the border layout. Components are added to the content pane where
the components reside so that the layout manager can control the component layout and
provide functionality that allows different types of components to work together. The call to
the getContentPane method of the JFrame class adds the Panel to the JFrame container.

//Create panel

panel = new JPanel();

//Specify layout manager and background color

panel.setLayout(new BorderLayout());

panel.setBackground(Color.white);

//Add label and button to panel

getContentPane().add(panel);

panel.add(BorderLayout.CENTER, text);

panel.add(BorderLayout.SOUTH, button);

}

Building a User Interface

34

 Essentials of the Java Programming Language
Action Listening

In addition to implementing the ActionListener interface, you have to add the action
listener to the JButton components. In this example the action listener is the SwingUI
object because its class implements the ActionListener interface.

What this means in this example is that the SwingUI object listens for action events. When a
button click action event occurs, the Java platform services pass the button click action to the
actionPerformed method implemented in the SwingUI class. The actionPerformed
implementation described in Event Handling on page 35 handles the action event.

Component classes have the appropriate add methods to add action listeners to them. The
JButton class has an addActionListener method, and the parameter passed to
addActionListener is this, meaning that the SwingUI action listener is added to the
button and the Java platform services pass any button-generated actions to the
actionPerformed method in the SwingUI class.

button = new JButton(“Click Me”);

//Add button as an event listener

button.addActionListener(this);

Event Handling

The Java platform passes an event object to the actionPerformed method. The event
object represents an action event that occurred. The actionPerformed method has an if
statement to determine whether the button component fired the action event and to test the
_clickMeMode variable to find out the state of the button component.

If the button component is waiting to be clicked, the label and button text change to reflect
that the button was just clicked. If the button component has been clicked, the label and
button text change to invite another click.

public void actionPerformed(ActionEvent event) {

Object source = event.getSource();

if (source == button){

if (_clickMeMode) {

text.setText("Button Clicked");

button.setText("Click Again");

_clickMeMode = false;

} else {

text.setText("I’m a Simple Program");

button.setText("Click Me");

_clickMeMode = true;

}

}

}

Building a User Interface

35

 Essentials of the Java Programming Language
Main Method

The main method creates the top-level frame, sets the title, and includes code that lets the
user close the window using the frame menu.

public static void main(String[] args) {

//Create top-level frame

SwingUI frame = new SwingUI();

frame.setTitle(“Example”);

//This code lets you close the window

WindowListener l = new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

};

frame.addWindowListener(l);

//This code lets you see the frame

frame.pack();

frame.setVisible(true);

}

}

The code to close the window uses an adapter class. If the event listener interface you need
provides more functionality than the program actually uses, you can use an adapter class.
The Java APIs provide adapter classes for all listener interfaces with more than one method.
You can use the adapter class instead of the listener interface and implement only the
methods you need. In the example, the WindowListener interface has seven methods and
this program needs only the windowClosing method so it makes sense to use the
WindowAdapter class instead of the WindowListener interface.

The next code segment extends the WindowAdapter class and overrides the
windowClosing method. The new keyword creates an anonymous instance of the
extended inner class. Anonymous means that you do not assign a name to the class, and
you cannot create another instance of the class without executing the code again. It is an
inner class because the extended class definition is nested within the SwingUI class.

This approach takes only a few lines of code. Implementing the WindowListener interface
would require six empty method implementations. Remember to add the WindowAdapter
object to the frame object so the frame object listens for window events.

WindowListener l = new WindowAdapter() {

//The instantiation of object l is extended to include this code:

public void windowClosing(WindowEvent e) {

System.exit(0);

}

};

frame.addWindowListener(l);
Building a User Interface

36

 Essentials of the Java Programming Language
Exercises: Applets Revisited

Using what you learned in Chapter 3 and in this lesson, convert the example code for this
lesson into the applet shown in Figure 9. A solution that uses the JApplet follows the figure.

You could also use the Applet class, which was the class used in Chapter 3. The JApplet
class is the Project Swing class equivalent for creating applets, and the applet code for this
exercise is almost identical except the JApplet class requires calls to getContentPane()
to set the layout and color and to add components to the panel, which you do not need if you
use the Applet class.

Figure 9. Applet Version of Application

import java.awt.Color;

import java.awt.BorderLayout;

import java.awt.event.*;

import javax.swing.*;

public class ApptoAppl extends JApplet implements ActionListener {

JLabel text;

JButton button;

JPanel panel;

private boolean _clickMeMode = true;

public void init() {

getContentPane().setLayout(new BorderLayout());

getContentPane().setBackground(Color.white);

text = new JLabel(“I’m a Simple Program”);

button = new JButton(“Click Me”);

button.addActionListener(this);

getContentPane().add(BorderLayout.CENTER, text);

getContentPane().add(BorderLayout.SOUTH, button);

}

Building a User Interface

37

 Essentials of the Java Programming Language
public void start() {

System.out.println(“Applet starting.”);

}

public void stop(){

System.out.println(“Applet stopping.”);

}

public void destroy(){

System.out.println(“Destroy method called.”);

}

public void actionPerformed(ActionEvent event) {

Object source = event.getSource();

if (source == button){

if (_clickMeMode) {

text.setText("Button Clicked");

button.setText("Click Again");

_clickMeMode = false;

} else{

text.setText("I’m a Simple Program");

button.setText("Click Me");

_clickMeMode = true;

}

}

}

}

Applet and Application Differences

The differences between the applet and application versions of the example are as follows:

• The applet class is public so another program such as appletviewer can access it.

• The applet class extends Applet. The application class extends JFrame.

• The applet version has no main method.

• The application constructor is replaced in the applet by start and init methods.

• GUI components are added directly to the Applet. User interface components are
added to the content plane of an application JFrame object.
Building a User Interface

38

5
5. Building Servlets
Like applications and applets, you use classes to build servlets. But servlets are different from
applications and applets in that the purpose of a servlet is to extend a server program to
enhance its functionality. One very common use for servlets is to extend a web server by
providing dynamic web content.

This lesson shows how to create a very simple browser-based HTML form that executes a basic
servlet to process user data that is entered onto the form. The example is the servlet version of
the applet and application examples studied so far. This lesson concludes with how to convert
the servlet to a JavaServer Page (JSP).

Servlets are easy to write. All you need is Tomcat, which is the combined Java Server pages and
Servlets reference implementation. You can download a free copy of Tomcat form the
java.sun.com website.

This lesson covers the following topics:

• About the Example

• HTML Form

• Servlet Code

• JavaServer Pages Technology

• Exercises
39

 Essentials of the Java Programming Language
About the Example

Web servers respond to browser requests with the HyperText Transfer Protocol (HTTP).
HTTP is the protocol for moving hypertext files across the internet, and HyperText Markup
Language (HTML) documents contain text that has been marked up for interpretation by an
HTML browser such as FireFox.

A browser accepts user input through an HTML form. The simple form used in this lesson has
one text input field for the user to enter text and a Submit button. When the user clicks the
Submit button, the simple servlet executes and processes the user input. In this example, the
simple servlet returns an HTML page that displays the text entered by the user.

Figure 10 shows the flow of data between the browser and servlet for this example.

Browser Page
with simple form

Enter Text: ___

Submit button

Returned Page

Here is your text.

HTTP servlet
to process
form data

Web Server

Figure 10. Returning an HTML Pages

HTML Form

Figure 11 shows the HTML form for the example. The following code for HTML form has an
ACTION parameter that is shown in bold where you specify the location of the servlet.

I’m a Simple Form

Enter some text and click the Submit button.

Click Me Reset

Figure 11. Simple HTML Form
Building Servlets

40

 Essentials of the Java Programming Language
<HTML>

<HEAD>

<TITLE>Example</TITLE>

</HEAD>

<BODY BGCOLOR="WHITE">

<H2>I’m a Simple Form</H2>

Enter some text and click the Submit button.

<FORM METHOD="POST" ACTION="/servlet/ExampServlet">

<INPUT TYPE="TEXT" NAME="DATA" SIZE=30>

<P>

<INPUT TYPE="SUBMIT" VALUE="Click Me">

<INPUT TYPE="RESET">

</FORM>

</BODY>

</HTML>

When the user clicks the Click Me button on the form, the servlet gets the text entered and
returns an HTML page with the text. Figure 12 shows an example page returned by
ExampServlet.java. See Servlet Code for a description of the servlet code that retrieves
the user input and generates this HTML page.

Button Clicked

Four score and seven years ago.

Return to Form.

Figure 12. HTML Page Returned to Browser

To run the example, put the servlet and HTML files in the correct directories for the web
server as indicated by the web server documentation or your administrator.

Servlet Code

The ExampServlet program builds an HTML page to return to the user. The servlet code
does not use any Project Swing or AWT components or have action event handling code. For
this simple servlet, you need to import only the following packages:

• java.io for system input and output. The HttpServlet class uses the IOException
class in this package to signal that an input or output exception of some kind has
occurred.

• javax.servlet, which contains generic (protocol-independent) servlet classes. The
HttpServlet class uses the ServletException class in this package to indicate a
servlet problem.

• javax.servlet.http, which contains HTTP servlet classes. The HttpServlet class
is in this package.
Building Servlets

41

 Essentials of the Java Programming Language
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ExampServlet extends HttpServlet {

 public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType(“text/html”);

PrintWriter out = response.getWriter();

out.println(“<body bgcolor=FFFFFF>”);

out.println(“<h2>Button Clicked<h2>”);

String data = request.getParameter(“data”);

if(data != null && data.length() > 0){

 out.println(data);

 } else {

 out.println(“No text entered.”);

 }

out.println(“<P>Return to Form”);

out.close();

}

}

Class and Method Declarations

All HTML servlet classes extend the HttpServlet abstract class. Because HttpServlet
is abstract, your servlet class must extend it and override at least one of its methods. An
abstract class is a class that contains unimplemented methods and cannot be instantiated
itself. You extend the abstract class and implement the methods you need so all HTTP
servlets use a common framework to handle the HTTP protocol.

public class ExampServlet extends HttpServlet {

 public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException{

The ExampServlet class is declared public so that the web server that runs the servlet,
which is not local to the servlet, can execute it.

The ExampServlet class defines a doPost method with the same name, return type, and
parameter list as the doPost method in the HttpServlet class. The ExampServlet class
overrides and implements the doPost method in the HttpServlet class.
Building Servlets

42

 Essentials of the Java Programming Language
The doPost method performs the HTTP POST operation, which is the type of operation
specified in the HTML form used for this example. The other possibility is the HTTP GET
operation, in which case you would implement the doGet method instead.

GET requests might pass parameters to a URL by appending them to the URL. A POST
request might pass additional data to a URL by directly sending it to the server separate from
the URL. A POST request cannot be bookmarked or emailed and does not change the URL of
the response. A GET request can be bookmarked, emailed, and can add information to the
URL of the response.

The parameter list for the doPost method takes a request and response object. The
browser sends a request to the servlet and the servlet sends a response back to the browser.
The doPost method implementation accesses information in the request object to find out
who made the request, what form the request data is in, and which HTTP headers were sent.
It also uses the response object to create an HTML page in response to the browser
request. The doPost method throws an IOException if there is an input or output problem
when it handles the request, and a ServletException if the request could not be handled.
These exceptions are handled in the HttpServlet class.

Method Implementation

The first part of the doPost method uses the response object to create an HTML page. It
first sets the response content type to be text/html, then gets a PrintWriter object for
formatted text output.

 response.setContentType(“text/html”);

 PrintWriter out = response.getWriter();

 out.println(“<body bgcolor=#FFFFFF>”);

 out.println(“<h2>Button Clicked</h2>”);

The next line uses the request object to get the data from the text field on the form and
store it in the data variable. The getparameter method gets the named parameter, returns
null if the parameter is not set, and returns an empty string if the parameter has no value.

String data = request.getParameter(“data”);

The next part of the doPost method gets the data out of the data parameter and passes it to
the response object to add to the HTML response page.

if(data != null && data.length() > 0){

out.println(data);

}else {

 out.println(“No text entered.”);

}

The last part of the doPost method creates a link to take the user from the HTML response
page back to the original form and closes the response.

out.println(“<P>Return to Form”);

out.close();

}

Building Servlets

43

 Essentials of the Java Programming Language
JavaServer Pages Technology

JavaServer Pages (JSP) let you put segments of servlet code directly within a static HTML or
eXtensible Markup Language (XML) page. When the JSP page executes, the application
server creates, compiles, loads, and runs a background servlet to execute the servlet code
segments and return an HTML page.

A JSP page looks like an HTML or XML page with servlet code segments embedded
between various forms of leading (<%) and closing (%>) JSP tags. There are no
HttpServlet methods such as doGet and doPost. Instead, the code that would normally
be in those methods is embedded directly in the JSP page with scriptlet tags.

HTML Form

It is straightforward to convert the servlet example to a JSP page. First, change the ACTION
parameter in the HTML form to invoke the JSP page instead of the servlet as shown below.
Note that the JSP page is not in the servlets directory, but in the same directory with the
HTML page.

<HTML>

<BODY BGCOLOR="WHITE">

<TITLE>Example</TITLE>

<TABLE><TR><TD WIDTH="275">

<H2>I’m a Simple Form</H2>

Enter some text and click the Submit button.

<FORM METHOD="POST" ACTION="ExampJsp.jsp">

<INPUT TYPE="TEXT" NAME="data" SIZE=30>

<P>

<INPUT TYPE="SUBMIT" VALUE="Click Me">

<INPUT TYPE="RESET">

</FORM>

</TD></TR></TABLE>

</BODY>

</HTML>

JSP Page

The following JSP page (ExampJSP.jsp) is equivalent to ExampServlet. It starts with the
usual HTML, HEAD, TITLE, and BODY tags and concludes with closing the BODY and HTML
tags. In between are two types of JSP tags: directives and script lets.
Building Servlets

44

 Essentials of the Java Programming Language
JSP directives are instructions that are processed by the JSP engine when the JSP page is
translated to a servlet. The directives used in this example tell the JSP engine to include
certain packages and classes. Directives are enclosed by the <%@ and %> directive tags.

JSP scriptlets let you embed Java code segments into the JSP page. The embedded code is
inserted directly into the servlet that executes when the page is requested. Scriptlets are
enclosed in the <% and %> scriptlet tags.

A scriptlet can use the following predefined variables: request, response, out, and in.
This means that you can use these variables without declaring them. For example, the
PrintWriter out = response.getWriter() line used in the servlet code to create the
out object is not needed in a JSP page.

<HTML>

<HEAD>

<TITLE>Example JSP Page</TITLE>

</HEAD>

<BODY>

<%@ page import="java.io.*" %>

<%@ page import="javax.servlet.*" %>

<%@ page import="javax.servlet.http.*" %>

<%

response.setContentType("text/html");

out.println("<body bgcolor=FFFFFF>");

out.println("<h2>Button Clicked<h2>");

String data = request.getParameter("data");

if(data != null && data.length() > 0){

out.println(data);

} else {

out.println("No text entered.");

}

out.println("<P>Return to Form");

out.close();

%>

</BODY>

</HTML>

Other JSP tags you can use are comments (<%-- comment %>), declarations (<%!
String data %>), expressions (<%= request.getParameter %>), and JSP-Specific
tags. The following code shows the JSP page converted to use the comment and declaration
tags.

<HTML>

<HEAD>
Building Servlets

45

 Essentials of the Java Programming Language
<TITLE>Example JSP Page</TITLE>

</HEAD>

<%-- Import Statements --%>

<%@ page import="java.io.*" %>

<%@ page import="javax.servlet.*" %>

<%@ page import="javax.servlet.http.*" %>

<%-- Declaration --%>

<%! String data; %>

<%

response.setContentType("text/html");

out.println("<body bgcolor=FFFFFF>");

out.println("<h2>Button Clicked<h2>");

data = request.getParameter("data");

if(data != null && data.length() > 0){

out.println(data);

}else {

out.println("No text entered.");

}

out.println("<P>Return to Form");

out.close();

%>

</BODY>

</HTML>

Exercises

• What is the function of a servlet?

• What does the request object do?

• What does the response object do?

• How is a JSP page different from a servlet?
Building Servlets

46

6
6. Access and Permissions
So far, you have learned how to retrieve and handle a short text string entered from the keyboard
into a simple UI or HTML form. But programs also retrieve, handle, and store data in files and
databases.

This lesson expands the applet, application, and servlet examples from the previous lessons to
perform basic file access using the APIs in the java.io package. It also shows you how to
grant applets and servlets permission to access specific files, and how to restrict an application
so it has access to specific files only. You learn how to perform similar operations on a database
in Chapter 7, Database Access and Permissions.

This lesson covers the following topics:

• File Access by Applications

• File Access by Applets

• Restrict Applications

• File Access by Servlets

• Exercises

• Code for This Lesson
47

 Essentials of the Java Programming Language
File Access by Applications

The Java platform provides a rich range of classes for reading character data (alphanumeric)
or byte data (a unit consisting of a combination of eight 1’s and 0’s) into a program, and
writing character or byte data out to an external file, storage device, or program. The source
or destination might be on the local computer system where the program is running or
anywhere on the network. See Code for This Lesson for full source code listings.

This section shows you how to read data from and write data to a file on the local computer
system.

• Reading: A program opens an input stream on the file and reads the data in serially (in
the order it was written to the file).

• Writing: A program opens an output stream on the file and writes the data out serially.

This first example converts the SwingUI.java example from Chapter 4, Building a User
Interface to accept user input through a text field and then save it to a file.

The window on the left appears when you start the FileIO application. When you click the
button, whatever is entered into the text field is saved to a file. After that, the file is opened,
read, and its text displayed in the window on the right. Click again and you are back to the
original window with a blank text field ready for more input.

Figure 13. Click the Button

The conversion from the SwingUI program from Chapter 4 to the FileIO program for this
lesson primarily involves the constructor and the actionPerformed method as
described in the next sections.

Constructor and Instance Variable Changes

The constructor instantiates the textField with a value of 30. This value tells the Java
platform the number of columns to use to calculate the preferred width of the text field object.
Lower values result in a narrower display, and likewise, higher values result in a wider
display.

Next, the text label object is added to the North section of the BorderLayout and the
textField object is added to the Center section.

//Instance variable for text field

JTextField textField;
Access and Permissions

48

 Essentials of the Java Programming Language
//Constructor

 FileIO(){

 text = new JLabel(“Text to save to file:”);

 button = new JButton(“Click Me”);

 button.addActionListener(this);

//Text field instantiation

 textField = new JTextField(30);

 panel = new JPanel();

 panel.setLayout(new BorderLayout());

 panel.setBackground(Color.white);

 getContentPane().add(panel);

//Adjustments to layout to add text field

 panel.add(BorderLayout.NORTH, text);

 panel.add(BorderLayout.CENTER, textField);

 panel.add(BorderLayout.SOUTH, button);

 }

Method Changes

The actionPerformed method uses the FileInputStream and FileOutputStream
classes to read data from and write data to a file. These classes handle data in byte streams
instead of character streams. Character streams are used in the applet example. A more
detailed explanation of the changes to the method implementation comes after the code.

public void actionPerformed(ActionEvent event){

Object source = event.getSource();

if(source == button){

String s = null;

//Variable to display text read from file

if (_clickMeMode){

FileInputStream in=null;

FileOutputStream out=null;

try {

 //Code to write to file

String text = textField.getText();

byte b[] = text.getBytes();

String outputFileName = System.getProperty(“user.home”,

File.separatorChar + “home” +

File.separatorChar + “zelda”) +

File.separatorChar + “text.txt”;

out = new FileOutputStream(outputFileName);

out.write(b);

out.close();
Access and Permissions

49

 Essentials of the Java Programming Language
//Clear text field

textField.setText("");

 //Code to read from file

String inputFileName = System.getProperty(“user.home”,

File.separatorChar + “home” +

File.separatorChar + “zelda”) +

File.separatorChar + “text.txt”;

File.separatorChar + "text.txt";

File inputFile = new File(inputFileName);

in = new FileInputStream(inputFile);

byte bt[] = new byte[(int)inputFile.length()];

in.read(bt);

String s = new String(bt);

in.close();

} catch(java.io.IOException e){

System.out.println(“Cannot access text.txt”);

} finally {

try {

in.close();

out.close();

} catch(java.io.IOException e) {

System.out.println("Cannot close");

}

}

//Clear text field

textField.setText("");

//Display text read from file

text.setText("Text retrieved from file:");

textField.setText(s);

button.setText("Click Again");

_clickMeMode = false;

} else {

//Save text to file

text.setText("Text to save to file:");

textField.setText("");

button.setText("Click Me");

_clickMeMode = true;

}

}

}

To write the input text to a file, the text is retrieved from the textField and converted to a
byte array.
Access and Permissions

50

 Essentials of the Java Programming Language
String text = textField.getText();

byte b[] = text.getBytes();

Next, a FileOutputStream object is created to open an output stream on the text.txt
file.

String outputFileName = System.getProperty(“user.home”,

File.separatorChar + “home” +

File.separatorChar + “zelda”) +

File.separatorChar + “text.txt”;

out = new FileOutputStream(outputFileName);

Finally, the FileOutputStream object writes the byte array to the text.txt file and
closes the output stream when the write operation completes.

out.write(b);

out.close();

The code to open a file for reading is similar. To read text from a file, a File object is created
and used to create a FileInputStream object.

String inputFileName = System.getProperty("user.home",

File.separatorChar + "home" +

File.separatorChar + "zelda") +

File.separatorChar + "text.txt";

File inputFile = new File(inputFileName);

in = new FileInputStream(inputFile);

 Next, a byte array is created that is the same length as the file into which the text is stored.

byte bt[] = new byte[(int)inputFile.length()];

in.read(bt);

Finally, the byte array is used to construct a String object, which contains the retrieved text
displayed in the textField component. The FileInputStream is closed when the
operation completes.

String s = new String(bt);

textField.setText(s);

in.close();

You might think you could simplify this code by not creating the File object and just passing
the inputFileName String object directly to the FileInputStream constructor. The
problem is the FileInputStream object reads a byte stream, and a byte stream is created
to a specified size. In this example, the byte stream needs to be the same size as the file, and
that size varies depending with the text written to the file. The File class has a length method
that lets you get this value so the byte stream can be created to the correct size each time.
Access and Permissions

51

 Essentials of the Java Programming Language
System Properties

The previous code used a call to System.getProperty to create the pathname to the file
in the user’s home directory. The System class maintains a set of properties that define
attributes of the current working environment. When the Java platform starts, system
properties are initialized with information about the runtime environment including the current
user, Java platform version, and the character used to separate components of a file name
(File.separatorChar).

The call to System.getProperty uses the keyword user.home to get the user’s home
directory and supplies the default value File.separatorChar + “home” +
File.separatorChar + “zelda” in case no value is found for this key.

File.separatorChar

The code used the java.io.File.separatorChar variable to construct the directory
pathname. This variable is initialized to contain the file separator value stored in the
file.separator system property and provides a way to construct platform-independent
pathnames.

For example, the pathname /home/zelda/text.txt for UNIX and
\home\zelda\text.txt for Windows are written as File.separatorChar + “home”
+ File.separatorChar + “zelda” + File.separatorChar + “text.txt” in a
platform-independent construction.

Exception Handling

Java includes classes that represent conditions that can be thrown by a program during
execution. Throwable classes can be divided into error and exception conditions and
descend from the java.lang.Exception and java.lang.Error. classes shown in
Figure 14. An Exception subclass indicates throwable exceptions that a typical application
would want to catch, and an Error subclass indicates a serious throwable error that a typical
application would not catch.

java.lang.Object

java.lang.Throwable

java.lang.Errorjava.lang.Exception

Figure 14. Exception Classes
Access and Permissions

52

 Essentials of the Java Programming Language
All exceptions except java.lang.RuntimeException and its subclasses are called
checked exceptions. The Java platform requires that a method catch or specify all checked
exceptions that can be thrown within the scope of a method. If a checked exception is not
either caught or specified, the compiler throws an error.

In the FileIO example, the actionPerformed method has file input and output code that
could throw a java.lang.IOException checked exception in the event the file cannot be
created for the write operation or opened for the read operation. To handle these possible
exception situations, the file input and output code in the actionPerformed method is
enclosed in a try and catch block.

try {

//Write to file

//Read from file

} catch (java.lang.IOException e) {

//Do something if read or write fails

}

If a method does not catch a checked exception, then the method must specify that it can
throw the checked exception because a checked exception that can be thrown by a method
is part of the method’s public interface. Callers of the method must know about the checked
exceptions a method might throw so they can take appropriate actions to handle the
exception.

While it is true that checked exceptions must be either caught or specified, sometimes you do
not have a choice. For example, the actionPerformed method already has a public
interface definition that cannot be changed to specify the java.io.IOException. If you
add a throws clause to the actionPerformed method, you will get a compiler error. So in
this case, the only thing you can do is catch and handle the checked exception.

However, methods you define yourself can either specify exceptions or catch and handle
them. Here is an example of a user-defined method that specifies an exception. In this case
the method implementation does not have to catch and handle IllegalValueException,
but callers of this method must catch and handle IllegalValueException. The decision
to throw an exception or catch and handle it in a user-defined method depends on the
method behavior. Sometimes it makes more sense for the method to handle its own
exceptions and sometimes it makes more sense to give that responsibility to the callers.

public int aMethod(int number1, int number2) throws IllegalValueException{

//Body of method

}

Whenever you catch exceptions, you should handle them in a way that is friendly to your
users. The exception and error classes have a toString method to print system error text
and a printStackTrace method to print a stack trace, which can be very useful for
debugging your application during development. But, it is probably better to deploy the
program with a more user-friendly approach to handling problems.

You can provide your own application-specific error text to print to the command line, or
display a dialog box with application-specific error text. Using application-specific error text
that you provide will also make it much easier to internationalize the application on page 173
Access and Permissions

53

 Essentials of the Java Programming Language
later because you will have access to the text. Display Data in a Dialog Box explains how to
display a dialog box with the text you want.

//Do this during development

} catch(java.io.IOException e) {

System.out.println(e.toString());

e.printStackTrace();

}

//But deploy it like this

} catch(java.io.IOException e){

System.out.println(“Cannot access text.txt”);

}

The example uses a finally block for closing the in and out objects. The finally block
is the final step in a try and catch block and contains clean-up code for closing files or
releasing other system resources. Statements in the finally block are executed no matter
what happens in the try block. So, even if an error occurs in the try block, you can be sure
the Statement and ResultSet objects will be closed to release the memory they were
using.

} finally {

try {

in.close();

out.close();

} catch(java.io.IOException e) {

System.out.println("Cannot close");

}

}

File Access by Applets

The file access code for the FileIOAppl applet is equivalent to the FileIO application,
but shows how to use the APIs for handling data in character streams instead of byte
streams. You can use either approach in applets or applications. In this lesson, the choice to
handle data in byte streams in the application and character streams in the applet is arbitrary.
In your programs, base the decision on your specific application requirements.

The changes to instance variables and the constructor are identical to the application
code, and the changes to the actionPerformed method are nearly identical with these
exceptions:

• Writing: The textField text is retrieved and passed directly to the out.write call.

• Reading: A character array is created to store the data read in from the input stream.

Note: See Grant Applets Permission before you run the applet.
Access and Permissions

54

 Essentials of the Java Programming Language
public void actionPerformed(ActionEvent event){

Object source = event.getSource();

if (source == button){

//Variable to display text read from file

String s = null;

if (_clickMeMode){

FileReader in=null;

FileWriter out=null;

try {

//Code to write to file

String text = textField.getText();

String outputFileName = System.getProperty("user.home”,

File.separatorChar + "home" +

File.separatorChar + "zelda") +

File.separatorChar + "text.txt";

out = new FileWriter(outputFileName);

out.write(text);

out.close();

 //Code to read from file

String inputFileName = System.getProperty("user.home",

File.separatorChar + "home" +

File.separatorChar + "zelda") +

File.separatorChar + "text.txt";

File inputFile = new File(inputFileName);

in = new FileReader(inputFile);

char c[] = new char[(int)inputFile.length()];

in.read(c);

s = new String(c);

in.close();

} catch(java.io.IOException e) {

System.out.println(“Cannot access text.txt”

} finally {

try {

in.close();

out.close();

} catch(java.io.IOException e) {

System.out.println("Cannot close");

}

}

//Clear text field

textField.setText("");

//Display text read from file
Access and Permissions

55

 Essentials of the Java Programming Language
text.setText("Text retrieved from file:");

textField.setText(s);

button.setText("Click Again");

_clickMeMode = false;

} else {

//Save text to file

text.setText("Text to save to file:");

button.setText("Click Me");

_clickMeMode = true;

}

}

}

 Grant Applets Permission

If you tried to run the applet example in a directory other than in your home directory, you
undoubtedly saw errors when you clicked the Click Me button. This is because Java
platform security imposes restrictions on applets. An applet cannot access local system
resources such as files without explicit permission. In the example for this lesson, the applet
cannot write to or read from the text.txt file without explicit permission.

Java platform security is enforced by the default security manager, which disallows all
potentially threatening access operations unless the applet executes with a policy file that
specifically grants the needed access. So for the FileUIAppl program to write to and read
from the text.txt file, the applet has to execute with a policy file that grants the appropriate
read and write access to the text.txt file.

Creating a Policy File

Policy tool is a Java platform security tool for creating policy files. The policy file you need to
run the applet appears below. You can use policy tool to create it (type policytool at the
command line) or copy the following text into an ASCII file. The advantage to using Policy
tool is that you can avoid typos and syntax errors that make the policy file ineffective.

grant {

permission java.util.PropertyPermission “user.home”, “read”;

permission java.io.FilePermission “${user.home}/text.txt”, “read,write”;

};

Run an Applet with a Policy File

Assuming the policy file is named polfile and is in the same directory with an HTML file
named fileIO.html that contains the HTML to run the FileIOAppl applet, you would run
the application in the appletviewer tool like this:
Access and Permissions

56

 Essentials of the Java Programming Language
appletviewer -J-Djava.security.policy=polfile fileIO.html

If your browser is enabled for the Java platform or if you have Java Plug-in installed, you can
run the applet from the browser if you put the policy file in your local home directory and
rename it java.policy for Windows and.java.policy for UNIX.

This is an HTML file to run the FileIOAppl applet:

<HTML>

<BODY>

<APPLET CODE=FileIOAppl.class WIDTH=200 HEIGHT=100>

</APPLET>

</BODY>

</HTML>

Restrict Applications

Normally, applications do not run under the default security manager, but you can launch an
application with special command-line options and a policy file to achieve the same kind of
restriction you get with applets. This is how to do it:

java -Djava.security.manager -Djava.security.policy=polfile FileIO

Because the application runs within the security manager, which disallows all access, the
policy file needs two additional permissions over those required to run the applet. The
accessEventQueue permission lets the security manager access the event queue where
action events are stored and load the user interface components. The
showWindowWIthoutWarningBanner permission lets the application execute without
displaying the banner warning that its window was created by the security manager.

grant {

permission java.awt.AWTPermission “accessEventQueue”;

permission java.awt.AWTPermission “showWindowWithoutWarningBanner”;

permission java.util.PropertyPermission “user.home”, “read”;

permission java.io.FilePermission “${user.home}/text.txt”, “read,write”;

};
Access and Permissions

57

 Essentials of the Java Programming Language
File Access by Servlets

Although servlets are invoked from a browser, they are under the security policy in force for
the web server under which they run. The FileIOServlet program writes to and reads
from the text.txt file without restriction under Java WebServer 1.1.1.

Exercises

Error Handling: If you want to make the code for this lesson easier to read, you could
separate the write and read operations and provide two try and catch blocks. The error
text for the read operation could be Cannot read text.txt, and the error text for the
write operation could be Cannot write text.txt. As an exercise, change the code to
handle the read and write operations separately. The FileIO class shows the solution.

Appending: So far the examples have shown you how to read in and write out streams of
data in their entirety. But often, you want to append data to an existing file or read in only
certain amounts. Using the RandomAccessFile class, alter the FileIO class to append to
the file. If you need help, see the AppendIO class on page 64.

Code for This Lesson

• FileIO Program

• FileIOAppl Program

• FileIOServlet Program

• AppendIO Program

FileIO Program

import java.awt.Color;

import java.awt.BorderLayout;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import java.awt.Color;

class FileIO extends JFrame implements ActionListener {

JLabel text;

JButton button;

JPanel panel;

JTextField textField;

private boolean _clickMeMode = true;

FileIO() { //Begin Constructor
Access and Permissions

58

 Essentials of the Java Programming Language
text = new JLabel(“Text to save to file:”);

button = new JButton(“Click Me”);

button.addActionListener(this);

textField = new JTextField(30);

panel = new JPanel();

panel.setLayout(new BorderLayout());

panel.setBackground(Color.white);

getContentPane().add(panel);

panel.add(BorderLayout.NORTH, text);

panel.add(BorderLayout.CENTER, textField);

panel.add(BorderLayout.SOUTH, button);

} //End Constructor

public void actionPerformed(ActionEvent event){

Object source = event.getSource();

//The equals operator (==) is one of the few operators

//allowed on an object in Java

if (source == button) {

String s = null;

//Write to file

if (_clickMeMode){

FileInputStream in=null;

FileOutputStream out=null;

try {

String text = textField.getText();

byte b[] = text.getBytes();

String outputFileName = System.getProperty("user.home",

File.separatorChar + "home" +

File.separatorChar + "zelda") +

File.separatorChar + "text.txt";

FileOutputStream out = new FileOutputStream(outputFileName);

out.write(b);

out.close();

} catch(java.io.IOException e) {

System.out.println("Cannot write to text.txt");

}

//Read from file

try {

String inputFileName = System.getProperty("user.home",

File.separatorChar + "home" +

File.separatorChar + "zelda") +

File.separatorChar + "text.txt";
Access and Permissions

59

 Essentials of the Java Programming Language
File inputFile = new File(inputFileName);

FileInputStream in = new FileInputStream(inputFile);

byte bt[] = new byte[(int)inputFile.length()];

in.read(bt);

s = new String(bt);

in.close();

} catch(java.io.IOException e) {

System.out.println("Cannot read from text.txt");

} finally {

try {

in.close();

out.close();

} catch(java.io.IOException e) {

System.out.println("Cannot close");

}

}

//Clear text field

textField.setText("");

//Display text read from file

text.setText("Text retrieved from file:");

textField.setText(s);

button.setText("Click Again");

_clickMeMode = false;

} else {

//Save text to file

text.setText(“Text to save to file:”);

textField.setText(““);

button.setText(“Click Me”);

_clickMeMode = true;

}

}

 }

public static void main(String[] args){

FileIO frame = new FileIO();

frame.setTitle(“Example”);

WindowListener l = new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

};

frame.addWindowListener(l);
Access and Permissions

60

 Essentials of the Java Programming Language
frame.pack();

frame.setVisible(true);

}

}

FileIOAppl Program

import java.awt.Color;

import java.awt.BorderLayout;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

public class FileIOAppl extends JApplet implements ActionListener {

JLabel text;

JButton button;

JPanel panel;

JTextField textField;

private boolean _clickMeMode = true;

public void init(){

getContentPane().setLayout(new BorderLayout(1, 2));

getContentPane().setBackground(Color.white);

text = new JLabel(“Text to save to file:”);

button = new JButton(“Click Me”);

button.addActionListener(this);

textField = new JTextField(30);

getContentPane().add(BorderLayout.NORTH, text);

getContentPane().add(BorderLayout.CENTER, textField);

getContentPane().add(BorderLayout.SOUTH, button);

}

public void start() {

System.out.println(“Applet starting.”);

}

public void stop() {

System.out.println(“Applet stopping.”);

}

public void destroy() {

System.out.println(“Destroy method called.”);

}

Access and Permissions

61

 Essentials of the Java Programming Language
public void actionPerformed(ActionEvent event){

Object source = event.getSource();

if (source == button) {

String s = null;

//Variable to display text read from file

if (_clickMeMode) {

FileReader in=null;

FileWriter out=null;

try {

 //Code to write to file

String text = textField.getText();

String outputFileName = System.getProperty("user.home",

File.separatorChar + "home" +

File.separatorChar + "zelda") +

File.separatorChar + "text.txt";

FileWriter out = new FileWriter(outputFileName);

out.write(text);

out.close();

//Code to read from file

String inputFileName = System.getProperty("user.home",

File.separatorChar + "home" +

File.separatorChar + "zelda") +

File.separatorChar + "text.txt";

File inputFile = new File(inputFileName);

FileReader in = new FileReader(inputFile);

char c[] = new char[(int)inputFile.length()];

in.read(c);

s = new String(c);

in.close();

}catch(java.io.IOException e) {

System.out.println("Cannot access text.txt");

} finally {

try {

in.close();

out.close();

} catch(java.io.IOException e) {

System.out.println("Cannot close");

}

}

//Clear text field
Access and Permissions

62

 Essentials of the Java Programming Language
textField.setText("");

//Display text read from file

text.setText("Text retrieved from file:");

textField.setText(s);

button.setText("Click Again");

_clickMeMode = false;

} else {

//Save text to file

text.setText("Text to save to file:");

button.setText("Click Me");

textField.setText("");

_clickMeMode = true;

}

}

}//end action performed method

}

FileIOServlet Program

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class FileIOServlet extends HttpServlet {

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<body bgcolor=FFFFFF>");

out.println("<h2>Button Clicked</h2>");

String data = request.getParameter("data");

FileReader fin = null;

FileWriter fout = null;

if (data != null && data.length() > 0) {

out.println("Text from form:");

out.println(data);

} else {

out.println("No text entered.");

}

try {
Access and Permissions

63

 Essentials of the Java Programming Language
//Code to write to file

String outputFileName=

System.getProperty("user.home",

File.separatorChar + "home" +

File.separatorChar + "monicap") +

File.separatorChar + "text.txt";

fout = new FileWriter(outputFileName);

fout.write(data);

//Code to read from file

String inputFileName =

System.getProperty("user.home",

File.separatorChar + "home" +

File.separatorChar + "monicap") +

File.separatorChar + "text.txt";

File inputFile = new File(inputFileName);

fin = new FileReader(inputFile);

char c[] = new char[30];

fin.read(c);

String s = new String(c);

out.println("<P>Text from file:");

out.println(s);

} catch(java.io.IOException e) {

System.out.println("Cannot access text.txt");

} finally {

try {

fout.close();

fin.close();

} catch(java.io.IOException e) {

System.out.println("Cannot close");

}

}

out.println("<P>Return to Form");

out.close();

}

}

AppendIO Program

import java.awt.Color;

import java.awt.BorderLayout;

import java.awt.event.*;

import javax.swing.*;
Access and Permissions

64

 Essentials of the Java Programming Language
import java.io.*;

class AppendIO extends JFrame implements ActionListener {

JLabel text;

JButton button;

JPanel panel;

JTextField textField;

private boolean _clickMeMode = true;

AppendIO() { //Begin Constructor

text = new JLabel(“Text to save to file:”);

button = new JButton(“Click Me”);

button.addActionListener(this);

textField = new JTextField(30);

panel = new JPanel();

panel.setLayout(new BorderLayout());

panel.setBackground(Color.white);

getContentPane().add(panel);

panel.add(BorderLayout.NORTH, text);

panel.add(BorderLayout.CENTER, textField);

panel.add(BorderLayout.SOUTH, button);

} //End Constructor

public void actionPerformed(ActionEvent event){

Object source = event.getSource();

if (source == button){

String s = null;

if (_clickMeMode){

RandomAccessFile out = null;

FileInputStream in = null

try {

//Write to file

String text = textField.getText();

byte b[] = text.getBytes();

String outputFileName = System.getProperty(“user.home”,

File.separatorChar + “home” +

File.separatorChar + “zelda”) +

File.separatorChar + "text.txt";

File outputFile = new File(outputFileName);

out = new RandomAccessFile(outputFile, “rw”);

out.seek(outputFile.length());

out.write(b);
Access and Permissions

65

 Essentials of the Java Programming Language
//Write a new line (NL) to the file.

out.writeByte(‘\n’);

out.close();

//Read from file

String inputFileName = System.getProperty(“user.home”,

File.separatorChar + “home” +

File.separatorChar + “zelda”) +

File.separatorChar + “text2.txt”;

File inputFile = new File(inputFileName);

in = new FileInputStream(inputFile);

byte bt[] = new byte[(int)inputFile.length()];

in.read(bt);

s = new String(bt);

in.close();

} catch(java.io.IOException e) {

System.out.println(e.toString());

} finally {

try {

out.close();

in.close();

} catch(java.io.IOException e) {

System.out.println("Cannot close");

}

}

//Clear text field

textField.setText("");

//Display text read from file

text.setText("Text retrieved from file:");

textField.setText(s);

button.setText("Click Again");

_clickMeMode = false;

} else {

//Save text to file

text.setText("Text to save to file:");

textField.setText("");

button.setText("Click Me");

_clickMeMode = true;

}

}

}//end action performed method
Access and Permissions

66

 Essentials of the Java Programming Language
public static void main(String[] args) {

JFrame frame = new AppendIO();

frame.setTitle(“Example”);

WindowListener l = new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

};

frame.addWindowListener(l);

frame.pack();

frame.setVisible(true);

}

}

Access and Permissions

67

7
7. Database Access and Permissions
This lesson converts the application, applet, and servlet examples from Chapter 6, Access and
Permissions to write to and read from a database using JDBC technology. JDBC is the Java
database connectivity API available in the Java platform software.

The code for this lesson is very similar to the code you saw in Chapter 6, but additional steps
beyond converting the file access code to database access code include setting up the
environment, creating a database table, and connecting to the database. Creating a database
table is a database administration task that is typically not part of your program code. However,
establishing a database connection and accessing the database are part of your code.

As in Chapter 6, the applet needs appropriate permissions to connect to the database. Which
permissions it needs varies with the type of driver used to make the database connection. This
lesson explains how to determine the permissions your program needs to successfully run.

This lesson covers the following topics:

• Database Setup

• Create Database Table

• Database Access by Applications

• Database Access by Applets

• Database Access by Servlets

• Exercises

• Code for This Lesson
68

 Essentials of the Java Programming Language
Database Setup

You need access to a database to run the examples in this lesson. You can install a database
on your machine or you might have access to a database at work. Either way, you also need
a database driver and any relevant environment settings so your program can load the driver
into memory and locate the database.

A database driver is software that lets a program establish a connection with a database. If
you do not have the right driver for the database to which you want to connect, your program
is unable to establish the connection.

Drivers either come with the database or are available from the web. If you install your own
database, consult the driver documentation for information on installation and other
environment settings you need for your platform. If you are using a database at work, consult
your database administrator.

To show you three ways to establish a database connection, the application example uses
the jdbc driver, the applet examples use the jdbc and jdbc.odbc drivers, and the servlet
example uses the jdbc.odbc driver. All examples connect to an OracleOCI7.3.4 database.
Connections to other databases involve similar steps and code.

Create Database Table

Once you have access to a database, create a table in it for the examples in this lesson. You
need a table named dba with one text field for storing character data.

TABLE DBA (

TEXT varchar2(100),

primary key (TEXT))

Database Access by Applications

This example converts the FileIO program from Chapter 6 to write data to and read data
from a database. The top window in Figure 15 appears when you start the Dba application,
and the window beneath it appears when you click the Click Me button.

When you click the Click Me button, whatever is entered into the text field is saved to the
database table. Then, the data is retrieved from the database table and redisplayed in the
window as shown on the bottom. If you write data to the table more than once, the database
table will have multiple rows and you might have to enlarge the window to see all the data.
Database Access and Permissions

69

 Essentials of the Java Programming Language
See Chapter 7, Code for This Lesson for the full source code listings.

Figure 15. Database Access by Applications

Establish a Database Connection

A database connection is established with the DriverManager and Connection classes
available in the java.sql package. The JDBC DriverManager class handles multiple
database drivers and initiates all database communication. To load the driver and connect to
the database, the application needs a Connection object and String objects that
represent the _driver and _url.

The _url string is in the form of a URL. It consists of the URL, Oracle subprotocol, and
Oracle data source in the form jdbc:oracle:thin, plus username, password, machine,
port, and protocol information.

private Connection c;

private final String _driver = “oracle.jdbc.driver.OracleDriver”;

private final String _url =
“jdbc:oracle:thin:username/password@developer:1521:ansid”;

The actionPerformed method calls the Class.forName(_driver) method to load the
driver, and the DriverManager.getConnection method to establish the connection.
These calls are enclosed by try and catch blocks.

Exception Handling describes try and catch blocks. The only thing different in this code is
that this block uses two catch statements because two different checked exceptions must
be caught.

The call to Class.forName(_driver) throws the
java.lang.ClassNotFoundException, and the call to c =
DriverManager.getConnection(_url) throws the java.sql.SQLException. With
either error, the application tells the user what is wrong and exits because the program
cannot operate in any meaningful way without a database driver or connection.

public void actionPerformed(ActionEvent event) {

try {

//Load the driver

Class.forName(_driver);

 //Establish database connection

c = DriverManager.getConnection(_url);
Database Access and Permissions

70

 Essentials of the Java Programming Language
} catch (java.lang.ClassNotFoundException e) {

 System.out.println(“Cannot find driver class”);

System.exit(1);

 } catch (java.sql.SQLException e) {

System.out.println(“Cannot get connection”);

System.exit(1);

}

}

Final and Private Variables

The member variables used to establish the database connection are declared private,
and two of those variables are also declared final.

final: A final variable contains a constant value that can never change once it is
initialized. In the example, the user name and password are final variables because you
would not want to allow an instance of this or any other class to change the information.

private: A private variable can only be accessed by the class in which it is declared. No
other class can read or change private variables. In the example, the database driver, user
name, and password variables are private to prevent an outside class from accessing
them and jeopardizing the database connection, or compromising the secret user name and
password information.

Write and Read Data

In the write operation, a Statement object is created from the Connection. The
Statement object has methods for executing SQL queries and updates. Next, a String
object that contains the SQL update for the write operation is constructed and passed to the
executeUpdate method of the Statement object.

Object source = event.getSource();

if (source == button) {

if (_clickMeMode) {

JTextArea displayText = new JTextArea();

Statement stmt = null;

ResultSet results = null’

try {

 //Code to write to database

String theText = textField.getText();

stmt = c.createStatement();

String updateString = “INSERT INTO dba VALUES (‘” + theText + “‘)”;

int count = stmt.executeUpdate(updateString);

SQL commands are String objects, and therefore, follow the rules of String construction
where the string is enclosed in double quotes (““) and variable data is appended with a plus
sign (+). The variable theText has single and double quotes to tell the database the SQL
string has variable rather than literal data.
Database Access and Permissions

71

 Essentials of the Java Programming Language
In the read operation, a ResultSet object is created from the executeQuery method of
the Statement object. The ResultSet contains the data returned by the query. The code
iterates through the ResultSet, retrieves the data, and appends the data to the
displayText text area.

//Code to read from database

results = stmt.executeQuery(“SELECT TEXT FROM dba “);

while(results.next()){

String s = results.getString(“TEXT”);

displayText.append(s + “\n”);

}

} catch(java.sql.SQLException e) {

System.out.println(“Cannot create SQL statement”);

} finally {

try {

stmt.close();

results.close();

} catch(java.sql.SQLException e) {

System.out.println("Cannot close");

}

}

//Display text read from database

text.setText("Text retrieved from database:");

button.setText("Click Again");

_clickMeMode = false;

//Display text read from database

} else {

text.setText("Text to save to database:");

textField.setText("");

button.setText("Click Me");

_clickMeMode = true;

}

}

Database Access and Permissions

72

 Essentials of the Java Programming Language
Database Access by Applets

The applet version of the example is like the application code except for the standard
differences between applications and applets described in Chapter 3, Building Applets..

However, if you run the applet without a policy file, you get a stack trace that indicates access
denied errors. You learned about policy files and how to use one to launch an applet with the
permissions it needs in Grant Applets Permission . In that lesson, you had a policy file with
the correct permissions and told how to use it to launch the applet. This lesson explains how
to read a stack trace to determine the permissions you need in a policy file.

This lesson has two versions of the database access applet: one uses the JDBC driver, and
the other uses the JDBC-ODBC bridge with an Open DataBase Connectivity (ODBC) driver.
Both applets perform the same operations on the same database table with different drivers.
Each applet has its own policy file with different permission lists and has different
requirements for locating the database driver.

See Code for This Lesson for the full source code listings.

JDBC Driver

The JDBC driver is meant to be used in a program written exclusively in Java. It converts
JDBC calls directly into the protocol used by the DBMS. This type of driver is available from
the DBMS vendor and is usually packaged with the DBMS software.

Start the Applet

To successfully run, the DbaAppl applet needs an available database driver and policy file.
This section walks through the steps to get everything set up. Here is the HTML file for
running the DbaAppl applet:

<HTML>

<BODY>

<APPLET CODE=DbaAppl.class WIDTH=200 HEIGHT=100>

</APPLET>

</BODY>

</HTML>

 And here is how to start the applet with appletviewer:

appletviewer DbaApplet.html

Locate the Database Driver

Assuming the driver is not available to the DriverManager for some reason, the following
error generates when you click the Click Me button.

cannot find driver
Database Access and Permissions

73

 Essentials of the Java Programming Language
This error means the DriverManager looked for the JDBC driver in the directory where the
applet HTML and class files are and could not find it. To correct this error, copy the driver to
that directory, and if the driver is bundled in a zip file, unzip the zip file so the applet can
access the driver. Once you have the driver in place, launch the applet again:

appletviewer dbaApplet.html

Read a Stack Trace

Assuming the driver is locally available to the applet and the DbaAppl applet is launched
without a policy file, you get the following stack trace when you click the Click Me button.

java.security.AccessControlException: access denied (java.net.SocketPermission
developer resolve)

The first line in the stack trace tells you access is denied. This means this stack trace was
generated because the applet tried to access a system resource without the proper
permission. The second line tells you that to correct this condition you need a
SocketPermission that gives the applet access to the machine where the database is
located. For this example, that machine is named developer.

You can use Policy tool to create the policy file you need, or you can create it with an ASCII
editor. This is the policy file with the permission indicated by the stack trace:

grant {

permission java.net.SocketPermission “developer”, “resolve”;

};

Run the applet again, but this time with a policy file named DbaApplPol that has the above
permission in it:

appletviewer -J-Djava.security.policy=DbaApplPol dbaApplet.html

You get a stack trace again, but this time it is a different error condition.

java.security.AccessControlException: access denied
(java.net.SocketPermission 129.144.176.176:1521 connect,resolve)

Now you need a SocketPermission that allows access to the Internet Protocol (IP)
address and port on the machine where the database is located. Here is the DbaApplPol
policy file with the permission indicated by the stack trace added to it.

grant {

permission java.net.SocketPermission “developer”, “resolve”;

permission java.net.SocketPermission “129.144.176.176:1521”,

“connect,resolve”;

};

Run the applet again with the above policy file with the permissions.

appletviewer -J-Djava.security.policy=DbaApplPol dbaApplet.html
Database Access and Permissions

74

 Essentials of the Java Programming Language
JDBC-ODBC Bridge with ODBC Driver

Open DataBase Connectivity (ODBC) is Microsoft’s programming interface for accessing a
large number of relational databases on numerous platforms. The JDBC-ODBC bridge is
built into the UNIX and Windows versions of the Java platform so you can do two things:

• Use ODBC from a program written in Java.

• Load ODBC drivers as JDBC drivers. This example uses the JDBC-ODBC bridge to load
an ODBC driver to connect to the database. The applet has no ODBC code, however.

The DriverManager uses environment settings to locate and load the database driver. This
means the driver file does not have to be locally accessible.

Start the Applet

Here is an HTML file for running the DbaOdbAppl applet. The entire DbaOdbAppl source
code appears on 82.

<HTML>

<BODY>

<APPLET CODE=DbaOdbAppl.class WIDTH=200 HEIGHT=100>

</APPLET>

</BODY>

</HTML>

And here is how to start the applet:

appletviewer dbaOdb.html

Read a Stack Trace

If the DbaOdbAppl applet is launched without a policy file, the following stack trace is
generated when the user clicks the Click Me button.

java.security.AccessControlException: access denied
(java.lang.RuntimePermission accessClassInPackage.sun.jdbc.odbc)

The first line in the stack trace tells you access is denied. This means this stack trace was
generated because the applet tried to access a system resource without the proper
permission. The second line means you need a RuntimePermission that gives the applet
access to the sun.jdbc.odbc package. This package provides the JDBC-ODBC bridge
functionality to the JVM.

You can use Policy tool to create the policy file you need, or you can create it with an ASCII
editor. This is the policy file with the permission indicated by the stack trace:

grant {

permission java.lang.RuntimePermission
“accessClassInPackage.sun.jdbc.odbc”;

};
Database Access and Permissions

75

 Essentials of the Java Programming Language
Run the applet again, but this time with a policy file named DbaOdbPol that has the above
permission in it:

 appletviewer -J-Djava.security.policy=DbaOdbPol dbaOdb.html

You get a stack trace again, but this time it is a different error condition.

java.security.AccessControlException: access denied
(java.lang.RuntimePermission file.encoding read)

The stack trace means the applet needs read permission to the encoded (binary) file. This is
the DbaOdbPol policy file with the permission indicated by the stack trace added to it:

grant {

permission java.lang.RuntimePermission
“accessClassInPackage.sun.jdbc.odbc”;

permission java.util.PropertyPermission “file.encoding”, “read”;

};

Run the applet again. If you use the above policy file with the permissions indicated, it should
work just fine.

appletviewer -J-Djava.security.policy=DbaOdbPol dbaOdb.html

Note: If you install Java Plug-In and run this applet from your browser, put
the policy file in your home directory and rename it java.policy
for Windows and .java.policy for UNIX.

 Database Access by Servlets

As explained in Chapter 5, Building Servlets, servlets are under the security policy in force for
the web server under which they run. When the DbaServlet servlet for this lesson executes
without restriction under Java WebServer 1.1.1.

The web server has to be configured to locate the database. Consult your web server
documentation or database administrator for help. With Java WebServer 1.1.1, the
configuration setup involves editing the startup scripts with such things as environment
settings for loading the ODBC driver and locating and connecting to the database.

See Code for This Lesson for the full source code listings.

Exercises

1 What are final variables?

2 What does a Statement object do?

3 How can you determine which permissions an applet needs to access local system
resources such as a database?
Database Access and Permissions

76

 Essentials of the Java Programming Language
Code for This Lesson

• Dba Program

• DbaAppl Program

• DbaOdbAppl Program

• DbaServlet Program

Dba Program

import java.awt.Color;

import java.awt.BorderLayout;

import java.awt.event.*;

import javax.swing.*;

import java.sql.*;

import java.net.*;

import java.util.*;

import java.io.*;

class Dba extends JFrame implements ActionListener {

JLabel text;

JButton button;

JPanel panel;

JTextField textField;

private Connection c;

private boolean _clickMeMode = true;

private final String _driver = “oracle.jdbc.driver.OracleDriver”;

private final String _url =
"jdbc:oracle:thin:username/password@developer:1521:ansid";

Dba() { //Begin Constructor

text = new JLabel(“Text to save to database:”);

button = new JButton(“Click Me”);

button.addActionListener(this);

textField = new JTextField(20);

panel = new JPanel();

panel.setLayout(new BorderLayout());

panel.setBackground(Color.white);

getContentPane().add(panel);

panel.add(BorderLayout.NORTH, text);

panel.add(BorderLayout.CENTER, textField);

panel.add(BorderLayout.SOUTH, button);
Database Access and Permissions

77

 Essentials of the Java Programming Language
} //End Constructor

public void actionPerformed(ActionEvent event){

try {

// Load the Driver

Class.forName(_driver);

// Make Connection

c = DriverManager.getConnection(_url);

} catch (java.lang.ClassNotFoundException e) {

System.out.println(“Cannot find driver”);

System.exit(1);

} catch (java.sql.SQLException e) {

System.out.println(“Cannot get connection”);

System.exit(1);

}

Object source = event.getSource();

if (source == button){

if (_clickMeMode){

JTextArea displayText = new JTextArea();

Statement stmt = null;

ResultSet results = null;

try{

//Code to write to database

String theText = textField.getText();

stmt = c.createStatement();

String updateString = "INSERT INTO dba VALUES (‘" + theText + "‘)";

int count = stmt.executeUpdate(updateString);

//Code to read from database

results = stmt.executeQuery("SELECT TEXT FROM dba ");

while (results.next()) {

String s = results.getString("TEXT");

displayText.append(s + "\n");

}

} catch(java.sql.SQLException e) {

System.out.println("Cannot create SQL statement");

} finally {

try {

stmt.close();

results.close();

} catch(java.sql.SQLException e) {

System.out.println("Cannot close");
Database Access and Permissions

78

 Essentials of the Java Programming Language
}

}

//Display text read from database

text.setText("Text retrieved from database:");

button.setText("Click Again");

_clickMeMode = false;

//Display text read from database

} else {

text.setText("Text to save to database:");

textField.setText("");

button.setText("Click Me");

_clickMeMode = true;

}

}

}

public static void main(String[] args) {

Dba frame = new Dba();

frame.setTitle(“Example”);

WindowListener l = new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

};

frame.addWindowListener(l);

frame.pack();

frame.setVisible(true);

}

}

DbaAppl Program

import java.awt.Color;

import java.awt.BorderLayout;

import java.awt.event.*;

import javax.swing.*;

import java.sql.*;

import java.net.*;

import java.io.*;

public class DbaAppl extends JApplet implements ActionListener {

JLabel text;

JButton button;
Database Access and Permissions

79

 Essentials of the Java Programming Language
JTextField textField;

private Connection c;

private boolean _clickMeMode = true;

private final String _driver = “oracle.jdbc.driver.OracleDriver”;

private final String _url =
"jdbc:oracle:thin:username/password@developer:1521:ansid";

public void init() {

getContentPane().setBackground(Color.white);

text = new JLabel(“Text to save to file:”);

button = new JButton(“Click Me”);

button.addActionListener(this);

textField = new JTextField(20);

getContentPane().setLayout(new BorderLayout());

getContentPane().add(BorderLayout.NORTH, text);

getContentPane().add(BorderLayout.CENTER, textField);

getContentPane().add(BorderLayout.SOUTH, button);

}

public void start() {

System.out.println(“Applet starting.”);

}

public void stop() {

System.out.println(“Applet stopping.”);

}

public void destroy() {

System.out.println(“Destroy method called.”);

}

public void actionPerformed(ActionEvent event) {

try{

Class.forName (_driver);

c = DriverManager.getConnection(_url);

} catch (java.lang.ClassNotFoundException e){

System.out.println(“Cannot find driver class”);

System.exit(1);

} catch (java.sql.SQLException e){

System.out.println(“Cannot get connection”);

System.exit(1);
Database Access and Permissions

80

 Essentials of the Java Programming Language
}

Object source = event.getSource();

if (_clickMeMode){

JTextArea displayText = new JTextArea();

Statement stmt = null;

ResultSet results = null;

try{

//Code to write to database

String theText = textField.getText();

stmt = c.createStatement();

String updateString = "INSERT INTO dba VALUES (‘" + theText + "‘)";

int count = stmt.executeUpdate(updateString);

//Code to read from database

results = stmt.executeQuery("SELECT TEXT FROM dba ");

while (results.next()) {

String s = results.getString("TEXT");

displayText.append(s + "\n");

}

} catch(java.sql.SQLException e) {

System.out.println("Cannot create SQL statement");

} finally {

try {

stmt.close();

results.close();

} catch(java.sql.SQLException e) {

System.out.println("Cannot close");

}

}

//Display text read from database

text.setText("Text retrieved from file:");

button.setText("Click Again");

_clickMeMode = false;

//Display text read from database

} else {

text.setText("Text to save to file:");

textField.setText("");

button.setText("Click Me");

_clickMeMode = true;

}

}

}

Database Access and Permissions

81

 Essentials of the Java Programming Language
}

DbaOdbAppl Program

import java.awt.Color;

import java.awt.BorderLayout;

import java.awt.event.*;

import javax.swing.*;

import java.sql.*;

import java.net.*;

import java.io.*;

public class DbaOdbAppl extends JApplet implements ActionListener {

JLabel text, clicked;

JButton button, clickButton;

JTextField textField;

private boolean _clickMeMode = true;

private Connection c;

private final String _driver = “sun.jdbc.odbc.JdbcOdbcDriver”;

private final String _user = “username”;

private final String _pass = “password”;

private final String _url = “jdbc:odbc:jdc”;

public void init() {

text = new JLabel(“Text to save to file:”);

clicked = new JLabel(“Text retrieved from file:”);

button = new JButton(“Click Me”);

button.addActionListener(this);

clickButton = new JButton(“Click Again”);

clickButton.addActionListener(this);

textField = new JTextField(20);

getContentPane().setLayout(new BorderLayout());

getContentPane().setBackground(Color.white);

getContentPane().add(BorderLayout.NORTH, text);

getContentPane().add(BorderLayout.CENTER, textField);

getContentPane().add(BorderLayout.SOUTH, button);

}

public void start() {}

public void stop() {

System.out.println(“Applet stopping.”);
Database Access and Permissions

82

 Essentials of the Java Programming Language
}

public void destroy() {

System.out.println(“Destroy method called.”);

}

public void actionPerformed(ActionEvent event) {

try {

Class.forName (_driver);

c = DriverManager.getConnection(_url, _user, _pass);

} catch (Exception e) {

e.printStackTrace();

System.exit(1);

}

Object source = event.getSource();

if (source == button) {

if (_clickMeMode) {

JTextArea displayText = new JTextArea();

Statement stmt = null;

ResultSet results = null;

try{

//Code to write to database

String theText = textField.getText();

stmt = c.createStatement();

String updateString = "INSERT INTO dba VALUES (‘" + theText + "‘)";

int count = stmt.executeUpdate(updateString);

//Code to read from database

results = stmt.executeQuery("SELECT TEXT FROM dba ");

while (results.next()) {

String s = results.getString("TEXT");

displayText.append(s + "\n");

}

} catch(java.sql.SQLException e) {

System.out.println("Cannot create SQL statement");

} finally {

try {

stmt.close();

results.close();

} catch(java.sql.SQLException e) {

System.out.println("Cannot close");

}

Database Access and Permissions

83

 Essentials of the Java Programming Language
}

//Display text read from database

} else {

text.setText("Text to save to file:");

textField.setText("");

button.setText("Click Me");

_clickMeMode = true;

}

}

}

}

DbaServlet Program

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.sql.*;

import java.net.*;

import java.io.*;

public class DbaServlet extends HttpServlet {

private Connection c;

private static final String _driver = “sun.jdbc.odbc.JdbcOdbcDriver”;

private static final String _user = “username”;

private static final String _pass = “password”;

private static final String _url = “jdbc:odbc:jdc”;

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType(“text/html”);

PrintWriter out = response.getWriter();

out.println(“<body bgcolor=FFFFFF>”);

out.println(“<h2>Button Clicked</h2>”);

String data = request.getParameter(“data”);

if (data != null && data.length() > 0) {

out.println(“Text from form:”);

out.println(data);

} else {
Database Access and Permissions

84

 Essentials of the Java Programming Language
out.println(“No text entered.”);

}

//Establish database connection

try {

Class.forName (_driver);

c = DriverManager.getConnection(_url, _user,_pass);

} catch (java.sql.SQLException e) {

System.out.println(“Cannot get connection”);

System.exit(1);

} catch (java.lang.ClassNotFoundException e) {

System.out.println("Driver class not found");

}

Statement stmt = null;

ResultSet results = null;

try {

//Code to write to database

stmt = c.createStatement();

String updateString = "INSERT INTO dba VALUES (‘" + data + "‘)";

int count = stmt.executeUpdate(updateString);

//Code to read from database

results = stmt.executeQuery("SELECT TEXT FROM dba ");

while (results.next()) {

String s = results.getString("TEXT");

out.println("
Text from database:");

out.println(s);

}

} catch(java.sql.SQLException e) {

System.out.println("Cannot create SQL statement");

} finally {

try {

stmt.close();

results.close();

} catch(java.sql.SQLException e) {

System.out.println("Cannot close");

}

}

out.println("<P>Return to Form");

out.close();

}

}

Database Access and Permissions

85

8
8. Remote Method Invocation
The Java Remote Method Invocation (RMI) API enables client and server communications over
a network. Typically, client programs send requests to a server program, and the server program
responds to those requests.

This lesson covers the following topics:

• RMI Scenario

• About the Example

• RemoteServer Class

• Send Interface

• RMIClient1 Class

• RMIClient2 Class

• Exercises

• Code for This Lesson
86

 Essentials of the Java Programming Language
RMI Scenario

A common client-server scenario is sharing a program over a network. The program is
installed on a server, and anyone who wants to use it starts it from his or her machine (client)
by double clicking an icon on the desktop or typing at the command line. The invocation
sends a request to a server program for access to the software, and the server program
responds by making the software available to the requestor.

Figure 16 shows a publicly accessible remote server object that enables client and server
communications. Clients can easily communicate directly with the server object and indirectly
with each other through the server object using Uniform Resource Locators (URLs) and
HyperText Transfer Protocol (HTTP). This lesson explains how to use the RMI API to
establish client and server communications.

Client
Program

Remote
Server
Object

Client
Program

Figure 16. Client and Server Communications

Enterprise JavaBeans technology is another Java API for remote communications. While
writing a simple Enterprise Bean is easy, running it requires an application server and
deployment tools. Because the Enterprise JavaBeans API is similar to RMI, you should be
able to go on to a good text on Enterprise JavaBeans and continue your studies when you
finish here.

About the Example

This lesson adapts the FileIO program from Chapter 6, Access and Permissions to use the
RMI API.

See Code for This Lesson for the full source code listings.
Remote Method Invocation

87

 Essentials of the Java Programming Language
Program Behavior

Figure 17, shows that the RMIClient1 program presents a simple user interface and
prompts for text input. When you click the Click Me button, the text is sent to the remote
server object. When you click the Click Me button on the RMIClient2 program, the text is
retrieved from the remote server object and displayed in the RMIClient2 user interface.

First instance of Client One

Figure 17. Sending Data Over the Network

As shown in Figure 18, if you start a second instance of RMIClient1, type in some text and
click its Click Me button, that text is sent to the remote server object where it can be
retrieved by the RMIClient2 program. To see the text sent by the second client, click the
RMIClient2 Click Me button.

Second instance of Client One

Figure 18. Two Instances of Client One
Remote Method Invocation

88

 Essentials of the Java Programming Language
File Summary

Figure 19 shows that the example program consists of the RMIClient1 program, the
remote server object and interface, and the RMIClient2 program. The corresponding
source code files for these executables are described in the bullet list. See Code for This
Lesson for the full source code listings.

RMIClient1
Program

RMIClient1
Program

RMIClient2
Program

Send Interface

sendData()
getData()

RemoteSend
Object

sendData()
getData()

Remote Server Object

Figure 19. Simple RMI Application

• RMIClient1.java: Client program that calls the sendData method on the
RemoteServer server object. The sendData method is made available to
RMIClient1 through the Send interface.

• RMIClient2.java: Client program that calls the getData method on the
RemoteServer server object. The getData method is made available to RMIClient2
through the Send interface.

• Send.java: Remote interface that declares the sendData and getData remote server
methods. This interface makes the remote server object methods available to clients
anywhere on the system.

• RemoteServer.java: Remote server object that implements Send.java and the
sendData and getData remote methods.

In addition, the following java.policy security policy file grants the permissions needed to
run the example:

grant {

permission java.net.SocketPermission “*:1024-65535”,
“connect,accept,resolve”;

permission java.net.SocketPermission “*:80”, “connect”;

permission java.awt.AWTPermission “accessEventQueue”;

permission java.awt.AWTPermission “showWindowWithoutWarningBanner”;

};
Remote Method Invocation

89

 Essentials of the Java Programming Language
Compile the Example

These instructions assume development is in the zelda home directory. The server program
is compiled in the home directory for user zelda, but copied to the public_html directory
for user zelda where it runs.

UNIX

cd /home/zelda/classes

javac Send.java

javac RemoteServer.java

javac RMIClient2.java

javac RMIClient1.java

rmic -d . RemoteServer

cp RemoteServer*.class /home/zelda/public_html/classes

cp Send.class /home/zelda/public_html/classes

Win32

cd \home\zelda\classes

javac Send.java

javac RemoteServer.java

javac RMIClient2.java

javac RMIClient1.java

rmic -d . RemoteServer

copy RemoteServer*.class \home\zelda\public_html\classes

copy Send.class \home\zelda\public_html\classes

The first two javac commands compile the RemoteServer and Send class and interface.
The next two javac commands compile the RMIClient2 and RMIClient1 classes.

The next line runs the rmic command on the RemoteServer server class. This command
produces output class files of the form ClassName_Stub.class and
ClassName_Skel.class. These output stub and skel classes let client programs
communicate with the RemoteServer server object.

The first copy command moves the RemoteServer class file with its associated skel and
stub class files to a publicly accessible location in the
/home/zelda/public_html/classes directory, which is on the server machine, so they
can be publicly accessed and downloaded. They are placed in the public_html directory
to be under the web server running on the server machine because these files are accessed
by client programs using URLs.

The second copy command moves the Send class file to the same location for the same
reason. The RMIClient1 and RMIClient2 class files are not made publicly accessible;
they communicate from their client machines using URLs to access and download the
remote object files in the public_html directory.
Remote Method Invocation

90

 Essentials of the Java Programming Language
• In Figure 20 you can see that RMIClient1 is invoked from a client-side directory
and uses the server-side web server and client-side JVM to download the publicly
accessible files.

• RMIClient2 is invoked from a client-side directory and uses the server-side web server
and client-side JVM to download the publicly accessible files.

Client Host

RMIClient2

Client-Side JVM

Client Host

RMIClient1

Client-Side JVM

Server Host

Remote
Server
Object

Server-Side Web
Server and JVM

Figure 20. Downloading Publicly Accessible Files

Start the RMI Registry

Before you start the client programs, you must start the RMI Registry, which is a server-side
naming repository that allows remote clients to get a reference to the remote server object.

Before you start the RMI Registry, make sure the shell or window in which you run the
rmiregistry command does not have a CLASSPATH environment variable that points to
the remote object classes. The CLASSPATH environment variable should not point to stub
and skel classes anywhere on your system except where they are supposed to be. If the
RMI Registry finds these classes in another location when it starts, it will not load them from
the JVM where the server is running, which will create problems when clients try to download
the remote server classes.

The following commands unset the CLASSPATH and start the RMI Registry on the default
1099 port. You can specify a different port by adding the port number as follows where 4321
is a port number: rmiregistry 4321 &.

If you specify a different port number, you must specify the same port number in your
server-side code.

UNIX

unsetenv CLASSPATH
Remote Method Invocation

91

 Essentials of the Java Programming Language
rmiregistry &

Win32

set CLASSPATH= CLASSPATH

start rmiregistry

Note: You might want to set the CLASSPATH back to its original setting
now.

Start the Server

To run the example programs, start the RemoteServer program first. If you start either
RMIClient1 or RMIClient2 first, they will not be able to establish a connection with the
server because the RemoteServer program is not running. In this example, the
RemoteServer program is started from the /home/zelda/public_html/classes
directory.

The lines beginning at java should be all on one line with spaces where the lines break. The
properties specified with the -D option to the java interpreter command are program
attributes that manage the behavior of the program for this invocation.

Note: In this example, the host machine is kq6py. To make this example
work, substitute this host name with the name of your own machine.

UNIX

java -Djava.rmi.server.codebase=http://kq6py/~zelda/classes

-Djava.rmi.server.hostname=kq6py.eng.sun.com

-Djava.security.policy=java.policy RemoteServer

Win32

java -Djava.rmi.server.codebase=file:c:\home\zelda\public_html\classes

-Djava.rmi.server.hostname=kq6py.eng.sun.com

-Djava.security.policy=java.policy RemoteServer

• The java.rmi.server.codebase property specifies where the publicly accessible
classes are located.

• The java.rmi.server.hostname property is the complete host name of the server
where the publicly accessible classes reside.
Remote Method Invocation

92

 Essentials of the Java Programming Language
• The java.rmi.security.policy property specifies the policy file with the
permissions needed to run the remote server object and access the remote server
classes for download.

• The class to execute (RemoteServer).

Run the RMIClient1 Program

In this example, RMIClient1 is started from the /home/zelda/classes directory. The
lines beginning at java should be all on one line with spaces where the lines break.
Properties specified with the -D option to the java interpreter command are program
attributes that manage the behavior of the program for this invocation.

Note: In this example, the host machine is kq6py. To make this example
work, substitute this host name with the name of your own machine.

UNIX

java -Djava.rmi.server.codebase=http://kq6py/~zelda/classes/

-Djava.security.policy=java.policy RMIClient1 kq6py.eng.sun.com

Win32

java -Djava.rmi.server.codebase=file:c:\home\zelda\classes\

-Djava.security.policy=java.policy RMIClient1 kq6py.eng.sun.com

• The java.rmi.server.codebase property specifies where the publicly accessible
classes for downloading are located.

• The java.security.policy property specifies the policy file with the permissions
needed to run the client program and access the remote server classes.

• The client program class to execute (RMIClient1), and the host name of the server
(kq6py) where the remote server classes are.

Run the RMIClient2 Program

In this example, RMIClient2 is started from the /home/zelda/classes directory. The
lines beginning at java should be all on one line with spaces where the lines break. The
properties specified with the -D option to the java interpreter command are program
attributes that manage the behavior of the program for this invocation.

Note: In this example, the host machine is kq6py. To make this example
work, substitute this host name with the name of your own machine.
Remote Method Invocation

93

 Essentials of the Java Programming Language
UNIX

java -Djava.rmi.server.codebase=http://kq6py/~zelda/classes/~zelda

 -Djava.security.policy=java.policy RMIClient2 kq6py.eng.sun.com

Win32

java -Djava.rmi.server.codebase=file:c:\home\zelda\public_html\classes
\home\zelda\public_html

-Djava.security.policy=java.policy RMIClient2 kq6py.eng.sun.com

• The java.rmi.server.codebase property specifies where the publicly accessible
classes are located.

• The java.rmi.server.hostname property is the complete host name of the server
where the publicly accessible classes reside.

• The java.rmi.security.policy property specifies the policy file with the
permissions needed to run the remote server object and access the remote server
classes for download.

• The class to execute (RMIClient2).

RemoteServer Class

The RemoteServer class extends UnicastRemoteObject and implements the remotely
accessible sendData and getData methods declared in the Send interface.
UnicastRemoteObject implements a number of java.lang.Object methods for
remote objects and includes constructors and static methods to make a remote object
available to receive method calls from client programs.

class RemoteServer extends UnicastRemoteObject implements Send {

private String text;

public RemoteServer() throws RemoteException {

super();

}

public void sendData(String gotText) {

text = gotText;

}

public String getData(){

return text;

}

}

The main method installs the RMISecurityManager and opens a connection with a port on
the machine where the server program runs. The RMI security manager determines whether
there is a policy file that lets downloaded code perform tasks that require permissions.

The main method creates a name for the RemoteServer object that includes the server
name (kq6py) where the RMI Registry and remote object run, and the name, Send. By
Remote Method Invocation

94

 Essentials of the Java Programming Language
default the server name uses port 1099. If you want to use a different port, you can add it with
a colon as follows where 4321 is the port number: kq6py.eng.sun.com:4321. If you
change the port here, you must start the RMI Registry with the same port number. The try
block creates a RemoteServer instance and binds the name to the remote object to the RMI
Registry with the Naming.rebind(name, remoteServer) statement. The string passed
to the rebind and lookup methods is the name of the host on which the name server is
running.

public static void main(String[] args) {

if (System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityManager());

}

String name = “//kq6py.eng.sun.com/Send”;

try {

Send remoteServer = new RemoteServer();

Naming.rebind(name, remoteServer();

System.out.println(“RemoteServer bound”);

} catch (java.rmi.RemoteException e) {

System.out.println(“Cannot crate remote server object”);

} catch(java.net.malformedURLException e) {

System.out.println(“Cannot look up server object”);

}

}

Note: The remoteServer object is type Send (see instance declaration
at top of class) because the interface available to clients is the Send
interface and its methods; not the RemoteServer class and its
methods.

Send Interface

The Send interface declares the methods implemented in the RemoteServer class. These
are the remotely accessible methods.

public interface Send extends Remote {

public void sendData(String text) throws RemoteException;

public String getData() throws RemoteException;

}

Remote Method Invocation

95

 Essentials of the Java Programming Language
RMIClient1 Class

The RMIClient1 class establishes a connection to the remote server program in its main
method and sends data to the remote server object in its actionPerformed method.

actionPerformed Method

The actionPerformed method calls the RemoteServer.sendData method to send text
to the remote server object.

public void actionPerformed(ActionEvent event){

Object source = event.getSource();

if (source == button) {

 //Send data over socket

String text = textField.getText();

try {

send.sendData(text);

} catch (Exception e) {

System.out.println(“Cannot send data to server);

}

textField.setText(new String(““));

}

}

main Method

The main method installs the RMISecurityManager and creates a name to use to look up
the RemoteServer server object. The client uses the Naming.lookup method to look up
the RemoteServer object in the RMI Registry running on the server. The security manager
determines whether there is a policy file that lets downloaded code perform tasks that require
permissions.

RMIClient1 frame = new RMIClient1();

...

if (System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityManager());

}

try {

//args[0] contains name of server where Send runs

String name = “//” + args[0] + “/Send”;

send = ((Send) Naming.lookup(name));

} catch (java.rmi.NotBoundException e) {

System.out.println(“Cannot look up remote server object”);

} catch (java.rmi.RemoteException e) {
Remote Method Invocation

96

 Essentials of the Java Programming Language
System.out.println(“Cannot look up remote server object”);

} catch (java.net.MalformedURLException e) {

System.out.println(“Cannot look up remote server object”);

}

...

RMIClient2 Class

The RMIClient2 class establishes a connection with the remote server program and gets
the data from the remote server object and displays it. The code to do this is in the
actionPerformed and main methods.

actionPerformed Method

The actionPerformed method calls the RemoteServer.getData method to retrieve the
data sent by the client program. This data is appended to the TextArea object for display to
the user on the server side.

public void actionPerformed(ActionEvent event) {

Object source = event.getSource();

if (source == button) {

try {

String text = send.getData();

textArea.append(text);

} catch (java.rmi.RemoteException e) {

System.out.println(“Cannot access data in server”);

}

}

}

main Method

The main method installs the RMISecurityManager and creates a name to use to look up
the RemoteServer server object. The args[0] parameter provides the name of the server
host. The client uses the Naming.lookup method to look up the RemoteServer object in
the RMI Registry running on the server.

The security manager determines whether there is a policy file that lets downloaded code
perform tasks that require permissions.

RMIClient2 frame = new RMIClient2();

...

if (System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityManager());

}

Remote Method Invocation

97

 Essentials of the Java Programming Language
try {

ring name = “//” + args[0] + “/Send”;

send = ((Send) Naming.lookup(name));

} catch (java.rmi.NotBoundException e) {

System.out.println(“Cannot look up remote server object”);

} catch (java.rmi.RemoteException e) {

System.out.println(“Cannot look up remote server object”);

} catch (java.net.MalformedURLException e) {

System.out.println(“Cannot look up remote server object”);

}

...

Exercises

1 What is the RMI Registry?

2 What do you have to start first, the server program or the RMI Registry?

3 What does the RMISecurityManager do?

4 Is the Send or RemoteServer object available to clients?

Code for This Lesson

• RMIClient1 Program

• RMIClient2 Program

• RemoteServer Program

• Send Interface

RMIClient1 Program

import java.awt.Color;

import java.awt.BorderLayout;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import java.net.*;

import java.rmi.*;

import java.rmi.server.*;

class RMIClient1 extends JFrame implements ActionListener {

JLabel text, clicked;

JButton button;
Remote Method Invocation

98

 Essentials of the Java Programming Language
JPanel panel;

JTextField textField;

static Send send;

RMIClient1() { //Begin Constructor

text = new JLabel(“Text to send:”);

textField = new JTextField(20);

button = new JButton(“Click Me”);

button.addActionListener(this);

panel = new JPanel();

panel.setLayout(new BorderLayout());

panel.setBackground(Color.white);

getContentPane().add(panel);

panel.add(BorderLayout.NORTH, text);

panel.add(BorderLayout.CENTER, textField);

panel.add(BorderLayout.SOUTH, button);

} //End Constructor

public void actionPerformed(ActionEvent event){

Object source = event.getSource();

if (source == button) {

//Send data over net

String text = textField.getText();

try {

send.sendData(text);

} catch (java.rmi.RemoteException e) {

System.out.println(“Cannot send data to server”);

}

textField.setText(new String(““));

}

}

public static void main(String[] args) {

RMIClient1 frame = new RMIClient1();

frame.setTitle(“Client One”);

WindowListener l = new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

};

frame.addWindowListener(l);

frame.pack();

frame.setVisible(true);

if (System.getSecurityManager() == null) {
Remote Method Invocation

99

 Essentials of the Java Programming Language
System.setSecurityManager(new RMISecurityManager());

}

try {

String name = “//” + args[0] + “/Send”;

send = ((Send) Naming.lookup(name));

} catch (java.rmi.NotBoundException e) {

System.out.println(“Cannot look up remote server object”);

} catch(java.rmi.RemoteException e) {

System.out.println(“Cannot look up remote server object”);

} catch(java.net.MalformedURLException e) {

System.out.println(“Cannot look up remote server object”);

}

}

}

RMIClient2 Program

import java.awt.Color;

import java.awt.BorderLayout;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import java.net.*;

import java.rmi.*;

import java.rmi.server.*;

class RMIClient2 extends JFrame implements ActionListener {

JLabel text, clicked;

JButton button;

JPanel panel;

JTextArea textArea;

static Send send;

RMIClient2(){ //Begin Constructor

text = new JLabel(“Text received:”);

textArea = new JTextArea();

button = new JButton(“Click Me”);

button.addActionListener(this);

panel = new JPanel();

panel.setLayout(new BorderLayout());

panel.setBackground(Color.white);

getContentPane().add(panel);

panel.add(BorderLayout.NORTH, text);
Remote Method Invocation

100

 Essentials of the Java Programming Language
panel.add(BorderLayout.CENTER, textArea);

panel.add(BorderLayout.SOUTH, button);

} //End Constructor

public void actionPerformed(ActionEvent event) {

Object source = event.getSource();

if (source == button) {

try {

String text = send.getData();

textArea.append(text);

} catch (java.rmi.RemoteException e) {

System.out.println(“Cannot access data in server”);

}

}

}

public static void main(String[] args) {

RMIClient2 frame = new RMIClient2();

frame.setTitle(“Client Two”);

WindowListener l = new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

};

frame.addWindowListener(l);

frame.pack();

frame.setVisible(true);

if (System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityManager());

}

try {

String name = “//” + args[0] + “/Send”;

send = ((Send) Naming.lookup(name));

} catch (java.rmi.NotBoundException e) {

System.out.println(“Cannot access data in server”);

} catch(java.rmi.RemoteException e) {

System.out.println(“Cannot access data in server”);

} catch(java.net.MalformedURLException e) {

System.out.println(“Cannot access data in server”);

}

}

}

Remote Method Invocation

101

 Essentials of the Java Programming Language
RemoteServer Program

import java.io.*;

import java.net.*;

import java.rmi.*;

import java.rmi.server.*;

class RemoteServer extends UnicastRemoteObject implements Send {

private String text;

public RemoteServer() throws RemoteException {

super();

}

public void sendData(String gotText) {

text = gotText;

}

public String getData(){

return text;

}

public static void main(String[] args) {

if (System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityManager());

}

String name = “//kq6py.eng.sun.com/Send”;

try {

Send remoteServer = new RemoteServer();

Naming.rebind(name, remoteServer);

System.out.println(“RemoteServer bound”);

} catch (java.rmi.RemoteException e) {

System.out.println(“Cannot create remote server object”);

} catch (java.net.MalformedURLException e) {

System.out.println(“Cannot look up server object”);

}

}

}

Remote Method Invocation

102

 Essentials of the Java Programming Language
Send Interface

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface Send extends Remote {

public void sendData(String text) throws RemoteException;

public String getData() throws RemoteException;

}

Remote Method Invocation

103

9
9. Socket Communications
In the Chapter 8, Remote Method Invocation example, multiple client programs communicate
with one server program without your writing any explicit code to establish the communication or
field the client requests. This is because the RMI API is built on sockets, which enable network
communications, and threads that allow the server program to handle simultaneous requests
from multiple clients. To help you understand what you get for free with the RMI API, and to
introduce the APIs for sockets and multithreaded programming, this lesson presents a simple
sockets-based program with a multithreaded server.

Threads let a program perform multiple tasks at one time. Using threads in a server program to
field simultaneous requests from multiple client programs is one common use, but threads can
be used in programs in many other ways. For example, you can start a thread to play sound
during an animation sequence or start a thread to load a large text file while the window to
display the text in the file appears. These other uses for threads are not covered in this lesson.

This lesson covers the following topics:

• What are Sockets and Threads?

• About the Examples

• Exercises

• Code for This Lesson
104

 Essentials of the Java Programming Language
What are Sockets and Threads?

A socket is a software endpoint that establishes bidirectional communication between a
server program and one or more client programs. Figure 21 shows how a socket associates
the server program with a specific hardware port on the machine where it runs so that any
client program anywhere in the network with a socket associated with that same port can
communicate with the server program.

Server Program
Port 4321

Client
Program

Client
Program

Client
Program

Figure 21. Sockets Connect a Server Program to One or More Client Programs

A server program typically provides resources to a network of client programs. Client
programs send requests to the server program, and the server program responds to the
request. One way to handle requests from more than one client is to make the server
program multithreaded. A thread is a sequence of instructions that run independently of the
program and any other threads.

A multithreaded server creates a thread for each communication it accepts from a client.
Using threads, a multithreaded server program can accept a connection from a client, start a
thread for that communication, and continue listening for requests from other clients.

About the Examples

There are two examples for this lesson. Both are adapted from the FileIO program.
Example 1 sets up a client-server communication between one server program and one
client program. The server program is not multithreaded and cannot handle requests from
more than one client.

Example 2 converts the server program to a multithreaded version so it can handle requests
from more than one client.

See Code for This Lesson for the full source code listings.
Socket Communications

105

 Essentials of the Java Programming Language
Example 1: Client-Side Behavior

The SocketClient client program shown in Figure 22 presents a simple user interface and
prompts for text input. When you click the Click Me button, the text is sent to the server
program. The client program expects an echo from the server and prints the echo on its
standard output.

Figure 22. Client Program

Example 1: Server-Side Behavior

The SocketServer program shown in Figure 23 presents a simple user interface, and
when you click the Click Me button, the text received from the client is displayed. The
server echoes the text it receives whether or not you click the Click Me button.

Figure 23. Server Program

Example 1: Compile and Run

The following are the compiler and interpreter commands to compile and run the example. To
run the example, start the server program first. If you do not, the client program cannot
establish the socket connection.

javac SocketServer.java

javac SocketClient.java

java SocketServer

java SocketClient
Socket Communications

106

 Essentials of the Java Programming Language
Example 1: Server-Side Program

The SocketServer program establishes a socket connection on Port 4321 in its
listenSocket method. It reads data sent to it and sends that same data back to the server
in its actionPerformed method.

listenSocket Method

The listenSocket method creates a ServerSocket object with the port number on
which the server program is going to listen for client communications. The port number must
be an available port, which means the number cannot be reserved or already in use. For
example, UNIX systems reserve ports 1 through 1023 for administrative functions leaving
port numbers greater than 1024 available for use.

public void listenSocket(){

try {

server = new ServerSocket(4321);

} catch (IOException e) {

System.out.println(“Could not listen on port 4321”);

System.exit(-1);

}

Next, the listenSocket method creates a Socket connection for the requesting client.
This code executes when a client starts and requests the connection on the host and port
where this server program is running. When the connection is successfully established, the
server.accept method returns a new Socket object.

try{

client = server.accept();

} catch (IOException e) {

System.out.println(“Accept failed: 4321”);

System.exit(-1);

}

Then, the listenSocket method creates a BufferedReader object to read the data sent
over the socket connection from the client program. It also creates a PrintWriter object to
send the data received from the client back to the server.

try{

in = new BufferedReader(

new InputStreamReader(client.getInputStream()));

out = new PrintWriter(client.getOutputStream(), true);

} catch (IOException e) {

System.out.println(“Read failed”);

System.exit(-1);

}

Socket Communications

107

 Essentials of the Java Programming Language
Finally, the listenSocket method loops on the input stream to read data as it arrives from
the client and writes to the output stream to send the data back.

while (true) {

try {

line = in.readLine();

//Send data back to client

out.println(line);

} catch (IOException e) {

System.out.println(“Read failed”);

System.exit(-1);

}

}

actionPerformed Method

The actionPerformed method is called by the Java platform for action events such as
button clicks. This actionPerformed method uses the text stored in the line object to
initialize the textArea object so the retrieved text can be displayed to the user.

public void actionPerformed(ActionEvent event) {

Object source = event.getSource();

if (source == button) {

textArea.setText(line);

}

}

Example 1: Client-Side Program

The SocketClient program establishes a connection to the server program on a particular
host and port number in its listenSocket method and sends the data entered by the user
to the server program in its actionPerformed method. The actionPerformed method
also receives the data back from the server and prints it to the command line.

listenSocket Method

The listenSocket method first creates a Socket object with the computer name (kq6py)
and port number (4321) where the server program is listening for client connection requests.
Next, it creates a PrintWriter object to send data over the socket connection to the server
program. It also creates a BufferedReader object to read the text sent by the server back
to the client.

Note: To make this example work, substitute this host name kq6py with the
name of your own machine.
Socket Communications

108

 Essentials of the Java Programming Language
public void listenSocket() {

 //Create socket connection

try {

socket = new Socket(“kq6py”, 4321);

out = new PrintWriter(socket.getOutputStream(), true);

in = new BufferedReader(new InputStreamReader(socket.getInputStream()));

} catch (UnknownHostException e) {

System.out.println(“Unknown host: kq6py”);

System.exit(1);

} catch (IOException e) {

System.out.println(“No I/O”);

System.exit(1);

}

}

actionPerformed Method

The actionPerformed method is called by the Java platform for action events such as
button clicks. This actionPerformed method code gets the text in the textField object
and passes it to the PrintWriter object (out), which then sends it over the socket
connection to the server program. The actionPerformed method then makes the
Textfield object blank so it is ready for more user input. Lastly, it receives the text sent
back to it by the server and prints the text.

public void actionPerformed(ActionEvent event) {

Object source = event.getSource();

if (source == button) {

//Send data over socket

String text = textField.getText();

out.println(text);

textField.setText(new String(““));

out.println(text);

}

 //Receive text from server

try {

String line = in.readLine();

System.out.println(“Text received: “ + line);

} catch (IOException e){

System.out.println(“Read failed”);

System.exit(1);

}

}

Socket Communications

109

 Essentials of the Java Programming Language
Example 2: Multithreaded Server Example

The example in its current form works between the server program and one client program
only. To allow multiple client connections as shown in Figure 24, the server program has to
be converted to a multithreaded server program.

Figure 24. Three Clients Sending Data to One Server Program

The multithreaded server program creates a new thread for every client request. Each client
has its own connection to the server for passing data back and forth. When running multiple
threads, you have to be sure that one thread cannot interfere with the data in another thread.

In this example the listenSocket method loops on the server.accept call waiting for
client connections and creates an instance of the ClientWorker class for each client
connection it accepts. The textArea component that displays the text received from the
client connection is passed to the ClientWorker instance with the accepted client
connection.

public void listenSocket() {

try {

server = new ServerSocket(4321);

} catch (IOException e) {

System.out.println("Could not listen on port 4321");

System.exit(-1);

}

while (true) {

ClientWorker w;

try{

//server.accept returns a client connection

w = new ClientWorker(server.accept(), textArea);

Thread t = new Thread(w);

t.start();
Socket Communications

110

 Essentials of the Java Programming Language
} catch (IOException e) {

System.out.println("Accept failed: 4444");

System.exit(-1);

}

}

}

The important changes in this version of the server program over the non-threaded server
program are that the line and client variables are no longer instance variables of the
server class, but are handled inside the ClientWorker class.

The ClientWorker class implements the Runnable interface, which has one method,
run. The run method executes independently in each thread. If three clients request
connections, three ClientWorker instances are created, a thread is started for each
ClientWorker instance, and the run method executes for each thread.

In this example, the run method creates the input buffer and output writer, loops on the input
stream waiting for input from the client, sends the data it receives back to the client, and sets
the text in the text area.

class ClientWorker implements Runnable {

private Socket client;

private JTextArea textArea;

//Constructor

ClientWorker(Socket client, JTextArea textArea) {

this.client = client;

this.textArea = textArea;

}

public void run() {

String line;

BufferedReader in = null;

PrintWriter out = null;

try{

in = new BufferedReader(new InputStreamReader(client.getInputStream()));

out = new PrintWriter(client.getOutputStream(), true);

} catch (IOException e) {

System.out.println("in or out failed");

System.exit(-1);

}

while (true) {

try {

line = in.readLine();

//Send data back to client

out.println(line);

textArea.append(line);

} catch (IOException e) {
Socket Communications

111

 Essentials of the Java Programming Language
System.out.println("Read failed");

System.exit(-1);

}

}

}

}

The API documentation for the JTextArea.append method states that this method is
thread safe, which means its implementation includes code that allows one thread to finish its
append operation before another thread can start an append operation. This prevents one
thread from overwriting all or part of a string of appended text and corrupting the output.

If the JTextArea.append method were not thread safe, you would need to wrap the call to
textArea.append(line) in a synchronized method and replace the call in the run
method to textArea.append(line) with a call to the appendText(line) method
instead.

The synchronized keyword gives this thread a lock on the textArea when the
appendText method is called so no other thread can change the textArea until this
method completes. Chapter 12, Develop the Example uses synchronized methods for
writing data out to a series of files.

The finalize method is called by the JVM before the program exits to give the program a
chance to clean up and release resources. Multithreaded programs should close all Files
and Sockets they use before exiting so they do not face resource starvation. The call to
server.close in the finalize method closes the Socket connection used by each
thread in this program.

protected void finalize() {

//Objects created in run method are finalized when

//program terminates and thread exits

try {

server.close();

} catch (IOException e) {

System.out.println(“Could not close socket”);

System.exit(-1);

}

 }
Socket Communications

112

 Essentials of the Java Programming Language
Exercises

1 How do you handle server requests from more than one client?

2 What does it mean when the API documentation states that a method is thread safe?

3 What is the synchronize keyword for?

4 What does the finalize method do?

Code for This Lesson

• SocketClient Program

• SocketServer Program

• SocketThrdServer Program

SocketClient Program

import java.awt.Color;

import java.awt.BorderLayout;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import java.net.*;

class SocketClient extends JFrame implements ActionListener {

JLabel text, clicked;

JButton button;

JPanel panel;

JTextField textField;

Socket socket = null;

PrintWriter out = null;

BufferedReader in = null;

SocketClient(){ //Begin Constructor

text = new JLabel(“Text to send over socket:”);

textField = new JTextField(20);

button = new JButton(“Click Me”);

button.addActionListener(this);

panel = new JPanel();

panel.setLayout(new BorderLayout());

panel.setBackground(Color.white);

getContentPane().add(panel);

panel.add(“North”, text);
Socket Communications

113

 Essentials of the Java Programming Language
panel.add(“Center”, textField);

panel.add(“South”, button);

} //End Constructor

public void actionPerformed(ActionEvent event) {

Object source = event.getSource();

if (source == button) {

//Send data over socket

String text = textField.getText();

out.println(text);

textField.setText(new String(““));

//Receive text from server

try{

String line = in.readLine();

System.out.println(“Text received :” + line);

} catch (IOException e) {

System.out.println(“Read failed”);

System.exit(1);

}

}

}

public void listenSocket() {

//Create socket connection

try{

socket = new Socket(“kq6py”, 4444);

out = new PrintWriter(socket.getOutputStream(), true);

in = new BufferedReader(

new InputStreamReader(socket.getInputStream()));

} catch (UnknownHostException e) {

System.out.println(“Unknown host: kq6py”);

System.exit(1);

} catch (IOException e) {

System.out.println(“No I/O”);

System.exit(1);

}

}

public static void main(String[] args) {

SocketClient frame = new SocketClient();

frame.setTitle(“Client Program”);

WindowListener l = new WindowAdapter() {

public void windowClosing(WindowEvent e) {
Socket Communications

114

 Essentials of the Java Programming Language
System.exit(0);

}

};

frame.addWindowListener(l);

frame.pack();

frame.setVisible(true);

frame.listenSocket();

}

}

SocketServer Program

import java.awt.Color;

import java.awt.BorderLayout;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import java.net.*;

class SocketServer extends JFrame implements ActionListener {

JButton button;

JLabel label = new JLabel(“Text received over socket:”);

JPanel panel;

JTextArea textArea = new JTextArea();

ServerSocket server = null;

Socket client = null;

BufferedReader in = null;

PrintWriter out = null;

String line;

SocketServer(){ //Begin Constructor

button = new JButton(“Click Me”);

button.addActionListener(this);

panel = new JPanel();

panel.setLayout(new BorderLayout());

panel.setBackground(Color.white);

getContentPane().add(panel);

panel.add(“North”, label);

panel.add(“Center”, textArea);

panel.add(“South”, button);

} //End Constructor

public void actionPerformed(ActionEvent event) {
Socket Communications

115

 Essentials of the Java Programming Language
Object source = event.getSource();

if(source == button) {

textArea.setText(line);

}

}

public void listenSocket() {

try{

server = new ServerSocket(4444);

} catch (IOException e) {

System.out.println(“Could not listen on port 4444”);

System.exit(-1);

}

try {

client = server.accept();

} catch (IOException e) {

System.out.println(“Accept failed: 4444”);

System.exit(-1);

}

try {

in = new BufferedReader(

new InputStreamReader(client.getInputStream()));

out = new PrintWriter(client.getOutputStream(), true);

} catch (IOException e) {

System.out.println(“Accept failed: 4444”);

System.exit(-1);

}

while (true) {

try{

line = in.readLine();

//Send data back to client

out.println(line);

} catch (IOException e) {

System.out.println(“Read failed”);

System.exit(-1);

}

}

}

protected void finalize() {
Socket Communications

116

 Essentials of the Java Programming Language
//Clean up

try {

in.close();

out.close();

server.close();

} catch (IOException e) {

System.out.println(“Could not close.”);

System.exit(-1);

}

}

public static void main(String[] args) {

SocketServer frame = new SocketServer();

frame.setTitle(“Server Program”);

WindowListener l = new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

};

frame.addWindowListener(l);

frame.pack();

frame.setVisible(true);

frame.listenSocket();

}

}

SocketThrdServer Program

import java.awt.Color;

import java.awt.BorderLayout;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import java.net.*;

class ClientWorker implements Runnable {

private Socket client;

private JTextArea textArea;

ClientWorker(Socket client, JTextArea textArea) {

this.client = client;

this.textArea = textArea;
Socket Communications

117

 Essentials of the Java Programming Language
}

public void run() {

String line;

BufferedReader in = null;

PrintWriter out = null;

try {

in = new BufferedReader(new InputStreamReader(client.getInputStream()));

out = new PrintWriter(client.getOutputStream(), true);

} catch (IOException e) {

System.out.println("in or out failed");

System.exit(-1);

}

while (true) {

try {

line = in.readLine();

//Send data back to client

out.println(line);

textArea.append(line);

} catch (IOException e) {

System.out.println("Read failed");

System.exit(-1);

}

}

 }

}

class SocketThrdServer extends JFrame{

JLabel label = new JLabel("Text received over socket:");

JPanel panel;

JTextArea textArea = new JTextArea();

ServerSocket server = null;

SocketThrdServer(){ //Begin Constructor

panel = new JPanel();

panel.setLayout(new BorderLayout());

panel.setBackground(Color.white);

getContentPane().add(panel);

panel.add("North", label);

panel.add("Center", textArea);
Socket Communications

118

 Essentials of the Java Programming Language
} //End Constructor

public void listenSocket() {

try {

server = new ServerSocket(4444);

} catch (IOException e) {

System.out.println("Could not listen on port 4444");

System.exit(-1);

}

while (true) {

ClientWorker w;

try{

w = new ClientWorker(server.accept(), textArea);

Thread t = new Thread(w);

t.start();

} catch (IOException e) {

System.out.println("Accept failed: 4444");

System.exit(-1);

}

}

}

protected void finalize(){

//Objects created in run method are finalized when

//program terminates and thread exits

try {

server.close();

} catch (IOException e) {

System.out.println("Could not close socket");

System.exit(-1);

}

}

public static void main(String[] args) {

SocketThrdServer frame = new SocketThrdServer();

frame.setTitle("Server Program");

WindowListener l = new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

};

frame.addWindowListener(l);
Socket Communications

119

 Essentials of the Java Programming Language
frame.pack();

frame.setVisible(true);

frame.listenSocket();

}

}

Socket Communications

120

0
110. Object-Oriented Programming
You already know about object-oriented programming because after working the examples in
this tutorial, you are familiar with the object-oriented concepts of class, object, instance, and
inheritance plus the access levels public and private. Essentially, you have been doing
object-oriented programming without thinking about it.

One of the great things about Java is that its design supports the object oriented model. To help
you gain a better understanding of object-oriented programming and its benefits, this lesson
presents a very brief overview of object-oriented concepts and terminology as they relate to the
example code presented in this tutorial. You will find pointers to good books on object-oriented
programming at the end of this chapter.

This lesson covers the following topics:

• Object-Oriented Programming

• Data Access Levels

• Your Own Classes

• Exercises
121

 Essentials of the Java Programming Language
Object-Oriented Programming

Java supports object-oriented programming techniques that are based on a hierarchy of
classes and well-defined and cooperating objects.

Classes

A class is a structure that defines the data and the methods to work on that data. When you
write programs in Java, all program data is wrapped in a class, whether it is a class you write
or a class you use from the Java API libraries.

For example, the ExampleProgram class from Chapter 1, Compile and Run a Simple
Program is a programmer-written class that uses the java.lang.System class from the
Java API libraries to print a string literal (character string) to the command line.

class ExampleProgram {

public static void main(String[] args) {

System.out.println(“I’m a simple Program”);

}

}

Classes in the Java API libraries define a set of objects that share a common structure and
behavior. The java.lang.System class used in the example provides access to standard
input, output, error streams, access to system properties, and more. In contrast, the
java.lang.String class defines string literals.

In the ExampleProgram class example, you do not see an explicit use of the String class,
but in Java, a string literal can be used anywhere a method expects to receive a String
object.

During execution, the Java platform creates a String object from the character string
passed to the System.out.println call, but your program cannot call any of the String
class methods because it did not instantiate the String object. If you want access to the
String methods, rewrite the example program to create a String object. The
String.concat method shown below adds text to the original string.

class ExampleProgram {

public static void main(String[] args){

String text = new String(“I’m a simple Program “);

System.out.println(text);

String text2 = text.concat(“that uses classes and objects”);

System.out.println(text2);

}

}

 The output looks like this:

I’m a simple Program

I’m a simple Program that uses classes and objects
Object-Oriented Programming

122

 Essentials of the Java Programming Language
Objects

An instance is a synonym for object. A newly created instance has data members and
methods as defined by the class for that instance. In the last example, various String
objects are created for the concatenation operation.

Because String objects cannot be edited, the java.lang.String.concat method
converts the String objects to editable StringBuffer string objects to do the
concatenation. In addition to the String object, there is an instance of the
ExampleProgram class in memory.

Well-Defined Boundaries and Cooperation

Class definitions must allow objects to cooperate during execution. In the previous section,
you saw how the System, String, and StringBuffer objects cooperated to print a
concatenated character string to the command line.

This section changes the example program to display the concatenated character string in a
JLabel component in a user interface to further illustrate the concepts of well-defined class
boundaries and object cooperation. The program code uses a number of cooperating
classes. Each class has its own purpose as summarized below, and where appropriate, the
classes are defined to work with objects of another class.

• ExampleProgram defines the program data and methods to work on that data.

• JFrame defines the top-level window including the window title and frame menu.

• WindowListener defines behavior for (works with) the Close option on the frame menu.

• String defines a character string passed to the label.

• JLabel defines a user interface component to display non-editable text.

• JPanel defines a container and uses the default layout manager
(java.awt.FlowLayout) to lay out the objects it contains.

While each class has its own specific purpose, they all work together to create the simple
user interface you see in Figure 25.

Figure 25. Simple User Interface

import javax.swing.*;

import java.awt.Color;

import java.awt.event.*;

class ExampleProgram extends JFrame {

public ExampleProgram() {

String text = new String(“I’m a simple Program “);
Object-Oriented Programming

123

 Essentials of the Java Programming Language
String text2 = text.concat(“that uses classes and objects”);

JLabel label = new JLabel(text2);

JPanel panel = new JPanel();

panel.setBackground(Color.white);

getContentPane().add(panel);

panel.add(label); }

public static void main(String[] args){

ExampleProgram frame = new ExampleProgram();

frame.setTitle(“Fruit $1.25 Each”);

WindowListener l = new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

};

frame.addWindowListener(l);

frame.pack();

frame.setVisible(true);

}

}

Inheritance and Polymorphism

One object-oriented concept that helps objects work together is inheritance. Inheritance
defines relationships among classes in an object-oriented language. The relationship is one
of parent to child where the child or extending class inherits all the attributes (methods and
data) of the parent class. In Java, all classes descend from java.lang.Object and inherit
its methods.

Figure 26 shows the class hierarchy as it descends from java.lang.Object for the
classes in the user interface example above. The java.lang.Object methods are also
shown because they are inherited and implemented by all of its subclasses, which is every
class in the Java API libraries. java.lang.Object defines the core set of behaviors that all
classes have in common.

As you move down the hierarchy, each class adds its own set of class-specific fields and
methods to what it inherits from its superclass. The java.awt.swing.JFrame class
inherits fields and methods from java.awt.Frame, which inherits fields and methods from
java.awt.Container, which inherits fields and methods from java.awt.Component,
which finally inherits from java.lang.Object, and each subclass adds its own fields and
methods as needed.

Each class in the hierarchy adds its own class-specific behavior to inherited methods. This
way different classes with a common parent can have like-named methods that exhibit
behavior appropriate to each class. For example, the Object class has a toString method
inherited by all its subclasses. You can call the toString method on any class to get its
string representation, but the actual behavior of the toString method in each class
Object-Oriented Programming

124

 Essentials of the Java Programming Language
depends on the class of the object on which it is invoked.

Object

Containert

Panel

Applet

SimpleApplet

Figure 26. Object Hierarchy

Another way objects work together is to define methods that take other objects as
parameters. For example, if you define a method that takes a java.lang.Object as a
parameter, it can accept any object in the entire Java platform. If you define a method that
takes a java.awt.Component as a parameter, it can accept any class that derives from
Component. This form of cooperation is called polymorphism.

You saw an example of polymorphism in Maintain and Display a Customer List . A
Collection object can contain any type of object as long as it descends from
java.lang.Object. The code is repeated here to show you that a HashSet collection can
add a String object and an Integer object to the set because the HashSet.add method
is defined to accept any class instance that traces back to the java.lang.Object class.

Polymorphism lets you call Set s = new HashSet() and return an object of type Set
even though a Set is an interface with no implementation. This is possible because the
HashSet class implements the Set interface, and so this statement actually returns an
object of type HashSet.

String custID = “munchkin”;

Integer creditCard = new Integer(25);

Set s = new HashSet();

s.add(custID);

s.add(creditCard);
Object-Oriented Programming

125

 Essentials of the Java Programming Language
Data Access Levels

Another way classes work together is through access level controls. Classes, and their fields
and methods have access levels to specify how they can be used by other objects during
execution, While cooperation among objects is desirable, there are times when you will want
to explicitly control access, and specifying access levels is the way to gain that control. When
you do not specify an access level, the default access level is in effect.

Classes

Classes can be declared package, public, private, or protected. If no access level is
specified, the class is package by default.

package: The class can be used only by instances of other classes in the same package.

public: A class can be declared public to make it accessible to all class instances
regardless of what package its class is in. You might recall that in Chapter 3, Building
Applets, the pallet class had to be declared public so it could be accessed by the
appletviewer tool because the appletviewer program is created from classes in another
package. Also, in Chapter 13, Internationalization, the server classes are made public so
client classes can access them.

private: A class declared private cannot be instantiated by any other class. Usually
private classes have public methods called factory methods than can be called by other
classes. These public factory methods create (manufacture) an instance of the class and
return it to the calling method.

protected: Only subclasses of a protected class can create instances of it.

Fields and Methods

Fields and methods can be declared private, protected, or public. If no access level is
specified, the field or method access level is package by default.

private: A private field or method is accessible only to the class in which it is defined. In
Chapter 7, Database Access and Permissions, the connection, user name, and password for
establishing the database access are all private. This is to prevent an outside class from
accessing them and jeopardizing the database connection, or compromising the secret user
name and password information.

protected: A protected field or method is accessible to the class itself, its subclasses, and
classes in the same package.

public: A public field or method is accessible to any class of any parentage in any package.
In Chapter 13 server data accessed by client programs is made public.

package: A package field or method is accessible to other classes in the same package.
Object-Oriented Programming

126

 Essentials of the Java Programming Language
Global Variables and Methods

Java does not have global variables and methods because all fields are wrapped in a class
and all classes are part of a package. To reference a field or method, you use the package,
class, and field or method name.

However, fields declared public static can be accessed and changed by any instance
regardless of parentage or package (similar to global variable data). If the field is declared
final public static, its value can never be changed, which makes it similar to a global
constant.

Your Own Classes

When you use the Java API classes, they have already been designed with the above
concepts in mind. They all descend from java.lang.Object giving them an inheritance
relationship; they have well-defined boundaries; and they are designed to cooperate with
each other where appropriate.

For example, you will not find a String class that takes an Integer object as input
because that goes beyond the well-defined boundary for a String. You will, however, find
the Integer class has a method for converting its integer value to a String so its value can
be displayed in a user interface component, which only accepts String objects.

But when you write your own classes, how can you be sure your classes have well-defined
boundaries, cooperate, and make use of inheritance? One way is to look at what a program
needs to do and separate those operations into distinct modules where each operational
module is defined by its own class or group of classes.

Well-Defined Boundaries and Cooperation

Looking at the RMIClient2 class from Chapter 12, Develop the Example, you can see it
performs the following operations: Get data, display data, store customer IDs, print customer
IDs, and reset the display.

Getting data, displaying the data, and resetting the display are closely related and easily form
an operational module. But in a larger program with more data processing, the storing and
printing of customer IDs could be expanded to store and print a wider range of data. In such
a case, it would make sense to have a separate class for storing data, and another class for
printing it in various forms.

You could, for example, have a class that defines how to store customer IDs, and tracks the
number of apples, peaches, and pears sold during the year. You could also have another
class that defines report printing. It could access the stored data to print reports on apples,
peaches, and pears sold by the month, per customer, or throughout a given season.

Making application code modular by separating out operational units makes it easier to
update and maintain the source code. When you change a class, as long as you did not
change any part of its public interface, you only have to recompile that one class.
Object-Oriented Programming

127

 Essentials of the Java Programming Language
Inheritance

Deciding what classes your program needs means separating operations into modules, but
making your code more efficient and easier to maintain means looking for common
operations where you can use inheritance. If you need to write a class that does similar
things to a class in the Java API libraries, it makes sense to extend that API library class and
use its methods rather than write everything from scratch.

The RMIClient2 class from Chapter 12 extends JFrame to leverage the ready-made
behavior it provides for a program’s top-level window including, frame menu closing behavior,
background color setting, and a customized title.

Likewise, to add customized behavior to an existing class, extend that class and add the
behavior you want. For example, you might want to create a custom Exception to use in
your program. To do this, write an exception class that extends java.lang.Exception
and implement it to do what you want.

Access Levels

You should always keep access levels in mind when you declare classes, fields, and
methods. Consider which objects really need access to the data, and use packages and
access levels to protect your application data from all other objects executing in the system.

Most object-oriented applications declare their data fields private so other objects cannot
access their fields directly and make the methods that access the private data protected,
public, or package as needed so other objects can manipulate their private data by calling
the methods only.

Keeping data private gives an object the control to maintain its data in a valid state. For
example, a class can include behavior for verifying that certain conditions are true before and
after the data changes. If other objects can access the data directly, it is not possible for an
object to maintain its data in a valid state like this.

Another reason to keep data fields private and accessible only through the class methods is
to make it easier to maintain source code. You can update your class by changing a field
definition and the corresponding method implementation, but other objects that access that
data do not need to be changed because their interface to the data (the method signature)
has not changed.
Object-Oriented Programming

128

 Essentials of the Java Programming Language
Exercises

Exercises for this lesson include setting the correct access levels and organizing a program
into functional units.

Setting Access Levels

So that an object has the control it needs to maintain its data in a valid state, it is always best
to restrict access as much as possible. Going back to Chapter 14, Packages and JAR File
Format, the server classes had to be made public and the DataOrder class fields also
had to be made public so the client programs could access them. At that time, no access
level was specified for the other classes and fields so they are all package by default, and all
methods have an access level of public.

A good exercise is to go back to the client classes from Chapter 13 and give the classes,
fields, and methods an access level so they are not accessed inappropriately by other
objects. You will find solutions for the RMIClient1 and RMIClient2 client programs in
Appendix A, RMIClient1.

Organizing Code into Functional Units

One way to divide code into functional units is to put the user interface code in one class and
the code that responds to user interface interactions in another class.

Go back to Chapter 13, and move the actionPerformed method in the RMIClient1 class
into its own class and file.

Hints:

• When you make the *RMIClient1* class into two classes, keep the following in mind:

• The class that builds the UI has a *main* method; the second class does not.

• The class with the *main* method creates an instance of the second class, and passes an
instance of itself to the second class.

• The second class accesses user interface components in the first class by referencing
the class instance.

• You will need to work out how the second class will get access to the message bundle
with the translated text in it.

• You will have to change some access levels so the classes can access each other's
members.

You can find a possible solution in Appendix A, Code Listings.
Object-Oriented Programming

129

11
11. User Interfaces Revisited
In Chapter 4, Building a User Interface , you learned how to use Project Swing components to
build a simple user interface with very basic backend functionality. Chapter 8, Remote Method
Invocation also showed you how to use the RMI API to send data from a client program to a
server program on the net where the data can be accessed by other client programs.

This lesson takes the RMI application from he Chapter 8, creates a more complex user interface
and data model, and uses a different layout manager. These changes provide the beginnings of
a very simple electronic-commerce application that consists of two types of client programs: one
lets users place purchase orders, and the other lets order processors view the orders.

This lesson covers the following topics:

• About the Example

• Exercises

• Code for This Lesson
130

 Essentials of the Java Programming Language
About the Example

This is a very simple electronic commerce example for instructional purposes only. It has
three programs: two client programs, one for ordering fruit and another for viewing the fruit
order, and one server program that is a repository for the order information.

The fruit order data is wrapped in a single data object defined by the DataOrder class. The
fruit order client retrieves the data from the user interface components where the user enters
it, stores the data in a DataOrder instance, and sends the DataOrder instance to the
server program. The view order client retrieves the DataOrder instance from the server,
gets the data out of the DataOrder instance, and displays the retrieved data in its user
interface.

Fruit Order Client (RMIClient1)

The RMIClient1 program shown in Figure 27 presents a user interface and prompts the
user to order apples, peaches, and pears at $1.25 each.

Figure 27. Fruit Order Client Program

After the user enters the number of each item to order, he or she presses the Return key to
commit the order and update the running total. The Tab key or mouse moves the cursor to
the next field. At the bottom, the user provides a credit card number and customer ID. When
the user selects the Purchase button, all values entered into the form are stored in a
DataOrder instance, which is then sent to the server program.

The user must press the Return key for the total to update. If the Return key is not pressed,
an incorrect total is sent across the net with the order. The Exercises for this lesson ask you
to change the code so incorrect totals are not sent across the net because the user did not
press the Return key.
User Interfaces Revisited

131

 Essentials of the Java Programming Language
Server Program

The Send interface and RemoteServer class have one getOrder method to return an
instance of DataOrder, and one setOrder method to accept an instance of DataOrder.
The fruit order clients call the send method to send data to the server, and view order clients
call the get method to retrieve the data. In this example, the server program has no user
interface.

View Order Client (RMIClient2)

The RMIClient2 program shown in Figure 28 presents a user interface, and when the user
clicks View Order, the program gets a DataOrder instance from the server program,
retrieves its data, and displays the data on the screen.

Figure 28. View Order Client Program

Compile and Run the Example

The code for this lesson is compiled and run the same way as the code in Program Behavior.
This summarized version includes steps to handle the DataOrder class introduced in this
lesson.

Compile

UNIX:

javac Send.java

javac RemoteServer.java

javac RMIClient2.java

javac RMIClient1.java

rmic -d . RemoteServer

cp RemoteServer*.class /home/zelda/public_html/classes
User Interfaces Revisited

132

 Essentials of the Java Programming Language
cp Send.class /home/zelda/public_html/classes

cp DataOrder.class /home/zelda/public_html/classes

Win32:

javac Send.java

javac RemoteServer.java

javac RMIClient2.java

javac RMIClient1.java

rmic -d . RemoteServer

copy RemoteServer*.class \home\zelda\public_html\classes

copy Send.class \home\zelda\public_html\classes

copy DataOrder.class \home\zelda\public_html\classes

Start the RMI Registry

UNIX:

unsetenv CLASSPATH

rmiregistry &

Win32:

set CLASSPATH=

start rmiregistry

Start the Server

UNIX:

java -Djava.rmi.server.codebase=http://kq6py/~zelda/classes

-Djava.rmi.server.hostname=kq6py.eng.sun.com

-Djava.security.policy=java.policy RemoteServer

Win32:

java -Djava.rmi.server.codebase=file:c:\home\zelda\public_html\classes

-Djava.rmi.server.hostname=kq6py.eng.sun.com

-Djava.security.policy=java.policy RemoteServer

Start the RMIClient1 Program

UNIX:

java -Djava.rmi.server.codebase=http://kq6py/~zelda/classes/

-Djava.security.policy=java.policy RMIClient1 kq6py.eng.sun.com

Win32:

java -Djava.rmi.server.codebase=file:c:\home\zelda\classes\

-Djava.security.policy=java.policy RMIClient1 kq6py.eng.sun.com
User Interfaces Revisited

133

 Essentials of the Java Programming Language
 Start the RMIClient2 Program

 UNIX:

java -Djava.rmi.server.codebase=http://kq6py/~zelda/classes

-Djava.security.policy=java.policy RMIClient2 kq6py.eng.sun.com

Win32:

java -Djava.rmi.server.codebase=file:c:\home\zelda\public_html\classes

-Djava.security.policy=java.policy RMIClient2 kq6py.eng.sun.com

Fruit Order (RMIClient1) Code

The RMIClient1 code uses the label, text field, text area, and button components shown in
Figure 29 to create the user interface for ordering fruit.

Figure 29. User Interface Components

On the display, the user interface components are arranged in a 2-column grid with labels in
the left column, and the input and output data fields (text fields and text areas) aligned in the
right column.

The user enters his or her apples, peaches, and pears order into the text fields and presses
the Return key after each fruit entry. When the Return key is pressed, the text field behavior
updates the item and cost totals displayed in the text areas.

The Reset button clears the display and the underlying variables for the total cost and total
items. The Purchase button sends the order data to the server program. If the Reset button
is clicked before the Purchase button, null values are sent to the server.
User Interfaces Revisited

134

 Essentials of the Java Programming Language
Instance Variables

These next lines declare the Project Swing component classes the RMIClient1 class uses.
These instance variables can be accessed by any method in the instantiated class. In this
example, they are built in the constructor and accessed in the actionPerformed method
implementation.

JLabel col1, col2;

JLabel totalItems, totalCost;

JLabel cardNum, custID;

JLabel applechk, pearchk, peachchk;

JButton purchase, reset;

JPanel panel;

JTextField appleqnt, pearqnt, peachqnt;

JTextField creditCard, customer;

JTextArea items, cost;

static Send send;

int itotal=0;

double icost=0;

Constructor

The constructor is fairly long because it creates all the components, sets the layout to a
2-column grid, and places the components in the grid on a panel.

The Reset and Purchase buttons and the appleqnt, pearqnt, and peachqnt text fields
are added to the RMIClient1 object so the RMIClient1 object will listen for action events
from these components. When the user clicks one of the buttons or presses Return in a text
field, an action event causes the platform to call the RMIClient1.actionPerformed
method where the behaviors for these components is defined.

Chapter 4 explains how a class declares the ActionListener interface and implements
the actionPerformed method if it needs to handle action events such as button clicks and
text field Returns. Other user interface components generate different action events, and as a
result, require you to declare different interfaces and implement different methods.

//Create left and right column labels

col1 = new JLabel(“Select Items”);

col2 = new JLabel(“Specify Quantity”);

//Create labels and text field components

applechk = new JLabel(“ Apples”);

appleqnt = new JTextField();

appleqnt.addActionListener(this);

pearchk = new JLabel(“ Pears”);
User Interfaces Revisited

135

 Essentials of the Java Programming Language
pearqnt = new JTextField();

pearqnt.addActionListener(this);

peachchk = new JLabel(“ Peaches”);

peachqnt = new JTextField();

peachqnt.addActionListener(this);

cardNum = new JLabel(“ Credit Card:”);

creditCard = new JTextField();

customer = new JTextField();

custID = new JLabel(“ Customer ID:”);

//Create labels and text area components

totalItems = new JLabel(“Total Items:”);

totalCost = new JLabel(“Total Cost:”);

items = new JTextArea();

cost = new JTextArea();

//Create buttons and make action listeners

purchase = new JButton(“Purchase”);

purchase.addActionListener(this);

reset = new JButton(“Reset”);

reset.addActionListener(this);

In the next lines, a JPanel component is created and added to the top-level frame, and the
layout manager and background color for the panel are specified. The layout manager
determines how user interface components are arranged on the panel.

The example in Chapter 4, used the BorderLayout layout manager. This example uses the
GridLayout layout manager, which arranges components in a grid using the number of
rows and columns you specify. The example uses a 2-column grid with an unlimited number
of rows as indicated by the zero (unlimited rows) and two (two columns) in the statement
panel.setLayout(new GridLayout(0,2)). Components are added to a panel using
GridLayout going across and down.

The layout manager and color are set on the panel, and the panel is added to the content
pane with a call to the getContentPane method of the JFrame class. A content pane
enables different types of components to work together in Project Swing.

//Create a panel for the components

panel = new JPanel();

//Set panel layout to 2-column grid

//on a white background

panel.setLayout(new GridLayout(0,2));

panel.setBackground(Color.white);
User Interfaces Revisited

136

 Essentials of the Java Programming Language
//Add components to panel columns

//going left to right and top to bottom

getContentPane().add(panel);

panel.add(col1);

panel.add(col2);

panel.add(applechk);

panel.add(appleqnt);

panel.add(peachchk);

panel.add(peachqnt);

panel.add(pearchk);

panel.add(pearqnt);

panel.add(totalItems);

panel.add(items);

panel.add(totalCost);

panel.add(cost);

panel.add(cardNum);

panel.add(creditCard);

panel.add(custID);

panel.add(customer);

panel.add(reset);

panel.add(purchase);

Event Handling

The actionPerformed method provides behavior when the Purchase or Reset button is
clicked, or the Return key is pressed in the appleqnt, peachqnt, or pearqnt text fields.
The Reset button is similar to the purchase button, and the other text fields are similar to
appleqnt, so this section will focus on the Purchase button, appleqnt text field, and the
DataOrder class.

The actionPerformed method in the RMIClient1 class retrieves the event, declares its
variables, and creates an instance of the DataOrder class.

public void actionPerformed(ActionEvent event) {

Object source = event.getSource();

Integer applesNo, peachesNo, pearsNo, num;

Double cost;

String number, text, text2;

DataOrder order = new DataOrder();

The DataOrder class defines fields that wrap and store the fruit order data. As you can see
by its class definition below, the DataOrder class has no methods. It does, however,
implement the Serializable interface.
User Interfaces Revisited

137

 Essentials of the Java Programming Language
An object created from a class that implements the Serializable interface can be
serialized. Object serialization transforms an object’s data to a byte stream that represents
the state of the data. The serialized form of the data contains enough information so the
receiving program can create an object with its data in the same state to what it was when
first serialized.

The RMI API uses object serialization to send data over the network, and many Java API
classes are serializable. So if you use RMI to send, for example, a JTextArea over the
network everything should work. But in this example, a special DataOrder object class was
created to wrap the data, and so this DataObject class has to be serializable so the RMI
services can serialize the data and send it between the client and server programs.

import java.io.*;

class DataOrder implements Serializable{

String apples, peaches, pears, cardnum, custID;

double icost;

int itotal;

}

Purchase Button

The Purchase button behavior involves retrieving data from the user interface components,
initializing the DataOrder instance, and sending the DataOrder instance to the server
program.

if (source == purchase) {

order.cardnum = creditCard.getText();

order.custID = customer.getText();

order.apples = appleqnt.getText();

order.peaches = peachqnt.getText();

order.pears = pearqnt.getText();

order.itotal = itotal;

order.icost = icost;

//Send data over net

try {

send.sendOrder(order);

} catch (java.rmi.RemoteException e) {

System.out.println("Cannot send data to server");

}

}

appleqnt Text Field

The appleqnt text field behavior involves retrieving the number of pears the user wants to
order, adding the number to the items total, using the number to calculate the cost, and
adding the cost for pears to the total cost.
User Interfaces Revisited

138

 Essentials of the Java Programming Language
//If Return in apple quantity text field

//Calculate totals

if (source == appleqnt) {

number = appleqnt.getText();

if (number.length() > 0) {

applesNo = Integer.valueOf(number);

itotal += applesNo.intValue();

} else {

/* else no need to change the total */

}

}

The total number of items is retrieved from the itotal variable and displayed in the UI.

num = new Integer(itotal);

text = num.toString();

this.items.setText(text);

Similarly, the total cost is calculated and displayed in the user interface using the icost
variable.

icost = (itotal * 1.25);

cost = new Double(icost);

text2 = cost.toString();

this.cost.setText(text2);

Note: The cost text area is referenced as this.cost because the
actionPerformed method has a cost variable of type Double.
To reference the instance text area and not the local Double by the
same name, you have to reference it as this.cost.

Cursor Focus

Users can use the Tab key to move the cursor from one component to another within the user
interface. The default Tab key movement steps through all user interface components
including the text areas in the order they were added to the panel.

The example program has a constructor call to pearqnt.setNextFocusableComponent
to make the cursor move from the pearqnt text field to the creditcard text field bypassing
the total cost and total items text areas when the Tab key is pressed.

cardNum = new JLabel(“ Credit Card:”);

creditCard = new JTextField();

//Make cursor go to creditCard component

pearqnt.setNextFocusableComponent(creditCard);
User Interfaces Revisited

139

 Essentials of the Java Programming Language
Converting Strings to Numbers and Back

To calculate the items ordered and their cost, the string values retrieved from the appleqnt,
peachqnt, and pearqnt text fields have to be converted to their number equivalents.

The string value is returned in the number variable. To be sure the user actually entered a
value, the string length is checked. If the length is not greater than zero, the user pressed
Return without entering a value. In this case, the else statement does nothing.

If the length is greater than zero, an instance of the java.lang.Integer class is created
from the string. Next, the Integer.intValue method is called to produce the integer (int)
equivalent of the string value so it can be added to the items total kept in the itotal integer
variable.

if (number.length() > 0) {

pearsNo = Integer.valueOf(number);

itotal += pearsNo.intValue();

} else {

/* else no need to change the total */

}

To display the running item and cost totals in their respective text areas, the totals have to be
converted back to strings. The code at the end of the actionPerformed method and
shown next does this.

To display the total items, a java.lang.Integer object is created from the itotal integer
variable. The Integer.toString method is called to produce the String equivalent of
the integer (int). This string is passed to the call to this.cost.setText(text2) to
update the Total Cost field in the display.

num = new Integer(itotal);

text = num.toString();

this.items.setText(text);

icost = (itotal * 1.25);

cost = new Double(icost);

text2 = cost.toString();

this.cost.setText(text2);

Until now, all data types used in the examples have been classes. But, the int and double
data types are not classes. They are primitive data types.

The int primitive type contains a single whole 32-bit integer value that can be positive or
negative. Use the standard arithmetic operators (+, -, *, and /) to perform arithmetic
operations on the integer. The Integer class also provides methods for working on the
value. For example, the Integer.intValue method lets you convert an Integer to an
int to perform arithmetic operations.

The double primitive type contains a 64-bit double-precision floating point value. The
Double class also provides methods for working on the value. For example, the
Double.doubleValue method lets you convert a Double to a double to perform
arithmetic operations.
User Interfaces Revisited

140

 Essentials of the Java Programming Language
Server Program Code

The server program consists of the RemoteServer class that implements the get and set
methods declared in the Send interface. Data of any type and size can be passed from one
client through the server to another client using the RMI API. No special handling is needed
for large amounts of data or special considerations for different data types, which can
sometimes be issues when using socket communications.

Send Interface

The server program is available to the RMIClient1 program through its Send interface,
which declares the remote server send and get methods.

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface Send extends Remote {

public void sendOrder(DataOrder order) throws RemoteException;

public DataOrder getOrder() throws RemoteException;

}

RemoteServer Class

The RemoteServer class implements the methods declared by the Send interface.

import java.awt.event.*;

import java.io.*;

import java.net.*;

import java.rmi.*;

import java.rmi.server.*;

class RemoteServer extends UnicastRemoteObject implements Send {

private DataOrder order;

public RemoteServer() throws RemoteException {

super();

}

public void sendOrder(DataOrder order) {

this.order = order;

}

public DataOrder getOrder() {

return this.order;

}

public static void main(String[] args) {
User Interfaces Revisited

141

 Essentials of the Java Programming Language
if(System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityManager());

}

String name = "//kq6py.eng.sun.com/Send";

try {

Send remoteServer = new RemoteServer();

Naming.rebind(name, remoteServer);

System.out.println("RemoteServer bound");

} catch (java.rmi.RemoteException e) {

System.out.println("Cannot create remote server object");

} catch (java.net.MalformedURLException e) {

System.out.println("Cannot look up server object");

}

}

}

View Order Client (RMIClient2) Code

The RMIClient2 Program uses text areas and buttons to display order information.

The code is very similar to the RMIClient1 class so this section explains how the order data
is retrieved.

The first lines retrieve the credit card number, the number of apples, peaches, and pears
ordered from the server program, and sets those values in the corresponding text areas.

The last lines retrieve the cost and item totals, which are double and integer, respectively.
It then converts the total cost to a java.lang.Double object, the total items to a
java.lang.Integer object, and calls the toString method on each to get the string
equivalents. Finally, the strings can be used to set the values for the corresponding text
areas.
User Interfaces Revisited

142

 Essentials of the Java Programming Language
DataOrder order = new DataOrder();

if (source == view) {

try {

order = send.getOrder();

creditNo.setText(order.cardnum);

customerNo.setText(order.custID);

applesNo.setText(order.apples);

peachesNo.setText(order.peaches);

pearsNo.setText(order.pears);

cost = order.icost;

price = new Double(cost);

unit = price.toString();

icost.setText(unit);

items = order.itotal;

itms = new Integer(items);

i = itms.toString();

itotal.setText(i);

Exercises

The example program has been kept simple for instructional purposes, and would need a
number of improvements to be an enterprise-worthy application. These exercises ask you to
improve the program in several ways.

Calculations and Pressing Return

If the user enters a value for apples, peaches, or pears and moves to the next field without
pressing the Return key, no calculation is made. When the user clicks the Purchase key, the
order is sent, but the item and cost totals are incorrect. So, in this application, relying on the
Return key action event is not good design. Modify the actionPerformed method so this
does not happen. You will find one way to modify it in RMIClient1 Program.

Non-Number Errors:

If the user enters a non-number value for apples, peaches, or pears, the program presents a
stack trace indicating an illegal number format. A good program will catch and handle the
error, rather than produce a stack trace. See RMIClient1 Improved Program for one way to
modify the RMIClient1 code..

Note: Find where the code throws an error and use a try and catch
block. The error is java.lang.NumberFormatException.
User Interfaces Revisited

143

 Essentials of the Java Programming Language
Extra Credit

RMIClient2 Program produces a stack trace if it gets null data from the DataOrder object
and tries to use it to set the text on the text area component. Add code to test for null fields in
the DataOrder object and supply an alternative value in the event a null field is found. No
solution for this exercise is provided.

If someone enters 2 apples and 2 pears, then decides they want 3 apples, the calculation
produces a total of 7 items at $8.75 when it should be 5 items at $6.25. See if you can fix this
problem. No solution for this exercise is provided.

The DataOrder class should really handle apples, peaches, pears, cardnum, and custID as
integers instead of strings. This not only makes more sense, but dramatically reduces the
packet size when the data is sent over the net. Change the DataOrder class to handle this
information as integers. You will also need to change some code in the RMIClient1 and
RMIClient2 classes because the user interface components handle this data as text. No
solution for this exercise is provided.

Code for This Lesson

• RMIClient1 Program

• RMIClient2 Program

• RMIClient1 Improved Program

RMIClient1 Program

import java.awt.Color;

import java.awt.GridLayout;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import java.net.*;

import java.rmi.*;

import java.rmi.server.*;

class RMIClient1 extends JFrame implements ActionListener {

JLabel col1, col2;

JLabel totalItems, totalCost;

JLabel cardNum, custID;

JLabel applechk, pearchk, peachchk;

JButton purchase, reset;

JPanel panel;

JTextField appleqnt, pearqnt, peachqnt;

JTextField creditCard, customer;
User Interfaces Revisited

144

 Essentials of the Java Programming Language
JTextArea items, cost;

static Send send;

int itotal=0;

double icost=0;

RMIClient1(){ //Begin Constructor

//Create left and right column labels

col1 = new JLabel(“Select Items”);

col2 = new JLabel(“Specify Quantity”);

//Create labels and text field components

applechk = new JLabel(“ Apples”);

appleqnt = new JTextField();

appleqnt.addActionListener(this);

pearchk = new JLabel(“ Pears”);

pearqnt = new JTextField();

pearqnt.addActionListener(this);

peachchk = new JLabel(“ Peaches”);

eachqnt = new JTextField();

peachqnt.addActionListener(this);

cardNum = new JLabel(“ Credit Card:”);

creditCard = new JTextField();

pearqnt.setNextFocusableComponent(creditCard);

customer = new JTextField();

custID = new JLabel(“ Customer ID:”);

//Create labels and text area components

totalItems = new JLabel(“Total Items:”);

totalCost = new JLabel(“Total Cost:”);

items = new JTextArea();

cost = new JTextArea();

//Create buttons and make action listeners

purchase = new JButton(“Purchase”);

purchase.addActionListener(this);

reset = new JButton(“Reset”);

reset.addActionListener(this);

//Create a panel for the components

panel = new JPanel();

//Set panel layout to 2-column grid
User Interfaces Revisited

145

 Essentials of the Java Programming Language
//on a white background

panel.setLayout(new GridLayout(0,2));

panel.setBackground(Color.white);

//Add components to panel columns

//going left to right and top to bottom

getContentPane().add(panel);

panel.add(col1);

panel.add(col2);

panel.add(applechk);

panel.add(appleqnt);

panel.add(peachchk);

panel.add(peachqnt);

panel.add(pearchk);

panel.add(pearqnt);

panel.add(totalItems);

panel.add(items);

panel.add(totalCost);

panel.add(cost);

panel.add(cardNum);

panel.add(creditCard);

panel.add(custID);

panel.add(customer);

panel.add(reset);

panel.add(purchase);

} //End Constructor

public void actionPerformed(ActionEvent event) {

Object source = event.getSource();

Integer applesNo, peachesNo, pearsNo, num;

Double cost;

String number, text, text2;

DataOrder order = new DataOrder();

//If Purchase button pressed . . .

if (source == purchase) {

//Get data from text fields

order.cardnum = creditCard.getText();

order.custID = customer.getText();

order.apples = appleqnt.getText();

order.peaches = peachqnt.getText();

order.pears = pearqnt.getText();
User Interfaces Revisited

146

 Essentials of the Java Programming Language
order.itotal = itotal;

order.icost = icost;

try{

//Send data over net

send.sendOrder(order);

} catch (java.rmi.RemoteException e) {

System.out.println("Cannot send data to server");

}

}

//If Reset button pressed

//Clear all fields

if (source == reset) {

creditCard.setText(““);

appleqnt.setText(““);

peachqnt.setText(““);

pearqnt.setText(““);

creditCard.setText(““);

customer.setText(““);

icost = 0;

itotal = 0;

}

//If Return in apple quantity text field

//Calculate totals

if (source == appleqnt) {

number = appleqnt.getText();

if (number.length() > 0) {

applesNo = Integer.valueOf(number);

itotal += applesNo.intValue();

} else {

/* else no need to change the total */

 }

}

//If Return in peach quantity text field

//Calculate totals

if (source == peachqnt) {

number = peachqnt.getText();

if (number.length() > 0) {

peachesNo = Integer.valueOf(number);

itotal += peachesNo.intValue();
User Interfaces Revisited

147

 Essentials of the Java Programming Language
} else {

/* else no need to change the total */

}

}

//If Return in pear quantity text field

//Calculate totals

if (source == pearqnt){

number = pearqnt.getText();

if (number.length() > 0){

pearsNo = Integer.valueOf(number);

itotal += pearsNo.intValue();

} else {

/* else no need to change the total */

}

}

num = new Integer(itotal);

text = num.toString();

this.items.setText(text);

icost = (itotal * 1.25);

cost = new Double(icost);

text2 = cost.toString();

this.cost.setText(text2);

}

public static void main(String[] args){

RMIClient1 frame = new RMIClient1();

frame.setTitle(“Fruit $1.25 Each”);

WindowListener l = new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

};

frame.addWindowListener(l);

frame.pack();

frame.setVisible(true);

if(System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityManager());

}

try {

String name = “//” + args[0] + “/Send”;

send = ((Send) Naming.lookup(name));
User Interfaces Revisited

148

 Essentials of the Java Programming Language
} catch (java.rmi.NotBoundException e) {

System.out.println(“Cannot look up remote server object”);

} catch (java.rmi.RemoteException e) {

System.out.println(“Cannot look up remote server object”);

} catch (java.net.MalformedURLException e) {

System.out.println(“Cannot look up remote server object”);

}

}

}

RMIClient2 Program

import java.awt.Color;

import java.awt.GridLayout;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import java.net.*;

import java.rmi.*;

import java.rmi.server.*;

import java.util.*;

class RMIClient2 extends JFrame implements ActionListener {

JLabel creditCard, custID;

JLabel apples, peaches, pears, total, cost, clicked;

JButton view, reset;

JPanel panel;

JTextArea creditNo, customerNo;

JTextArea applesNo, peachesNo, pearsNo, itotal, icost;

static Send send;

String customer;

RMIClient2(){ //Begin Constructor

//Create labels

creditCard = new JLabel(“Credit Card:”);

custID = new JLabel(“Customer ID:”);

apples = new JLabel(“Apples:”);

peaches = new JLabel(“Peaches:”);

pears = new JLabel(“Pears:”);

total = new JLabel(“Total Items:”);

cost = new JLabel(“Total Cost:”);
User Interfaces Revisited

149

 Essentials of the Java Programming Language
//Create text area components

creditNo = new JTextArea();

customerNo = new JTextArea();

applesNo = new JTextArea();

peachesNo = new JTextArea();

pearsNo = new JTextArea();

itotal = new JTextArea();

icost = new JTextArea();

//Create buttons

view = new JButton(“View Order”);

view.addActionListener(this);

reset = new JButton(“Reset”);

reset.addActionListener(this);

//Create panel for 2-column layout

//Set white background color

panel = new JPanel();

panel.setLayout(new GridLayout(0,2));

panel.setBackground(Color.white);

//Add components to panel columns

//going left to right and top to bottom

getContentPane().add(panel);

panel.add(creditCard);

panel.add(creditNo);

panel.add(custID);

panel.add(customerNo);

panel.add(apples);

panel.add(applesNo);

panel.add(peaches);

panel.add(peachesNo);

panel.add(pears);

panel.add(pearsNo);

panel.add(total);

panel.add(itotal);

panel.add(cost);

panel.add(icost);

panel.add(view);

panel.add(reset);

} //End Constructor
User Interfaces Revisited

150

 Essentials of the Java Programming Language
public void actionPerformed(ActionEvent event) {

Object source = event.getSource();

String text=null, unit, i;

double cost;

Double price;

int items;

Integer itms;

DataOrder order = new DataOrder();

//If View button pressed

//Get data from server and display it

//Extra Credit: If a DataOrder field is empty, the program

//produces a stack trace when it tries to setText on a user interface

//component with empty data. Add code to find empty fields

//and assign alternate data in the event null fields are found

if (source == view) {

try {

order = send.getOrder();

creditNo.setText(order.cardnum);

customerNo.setText(order.custID);

applesNo.setText(order.apples);

peachesNo.setText(order.peaches);

pearsNo.setText(order.pears);

cost = order.icost;

price = new Double(cost);

unit = price.toString();

icost.setText(unit);

items = order.itotal;

itms = new Integer(items);

i = itms.toString();

itotal.setText(i);

} catch (java.rmi.RemoteException e) {

System.out.println("Cannot get data from server");

}

}

//If Reset button pressed

//Clear all fields

if(source == reset) {

creditNo.setText(““);

customerNo.setText(““);

applesNo.setText(““);
User Interfaces Revisited

151

 Essentials of the Java Programming Language
peachesNo.setText(““);

pearsNo.setText(““);

itotal.setText(““);

icost.setText(““);

}

}

public static void main(String[] args) {

RMIClient2 frame = new RMIClient2();

frame.setTitle(“Fruit Order”);

WindowListener l = new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

};

frame.addWindowListener(l);

frame.pack();

frame.setVisible(true);

if(System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityManager());

}

try {

String name = “//” + args[0] + “/Send”;

send = ((Send) Naming.lookup(name));

} catch (java.rmi.NotBoundException e) {

System.out.println(“Cannot access data in server”);

} catch(java.rmi.RemoteException e) {

System.out.println(“Cannot access data in server”);

} catch(java.net.MalformedURLException e) {

System.out.println(“Cannot access data in server”);

}

}

}

RMIClient1 Improved Program

import java.awt.Color;

import java.awt.GridLayout;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import java.net.*;
User Interfaces Revisited

152

 Essentials of the Java Programming Language
import java.rmi.*;

import java.rmi.server.*;

class RMIClient1Improved extends JFrame implements ActionListener {

JLabel col1, col2;

JLabel totalItems, totalCost;

JLabel cardNum, custID;

JLabel applechk, pearchk, peachchk;

JButton purchase, reset;

JPanel panel;

JTextField appleqnt, pearqnt, peachqnt;

JTextField creditCard, customer;

JTextArea items, cost;

static Send send;

RMIClient1Improved(){ //Begin Constructor

//Create left and right column labels

col1 = new JLabel(“Select Items”);

col2 = new JLabel(“Specify Quantity”);

//Create labels and text field components

applechk = new JLabel(“ Apples”);

appleqnt = new JTextField();

appleqnt.addActionListener(this);

pearchk = new JLabel(“ Pears”);

pearqnt = new JTextField();

pearqnt.addActionListener(this);

peachchk = new JLabel(“ Peaches”);

peachqnt = new JTextField();

peachqnt.addActionListener(this);

cardNum = new JLabel(“ Credit Card:”);

creditCard = new JTextField();

pearqnt.setNextFocusableComponent(creditCard);

customer = new JTextField();

custID = new JLabel(“ Customer ID:”);

//Create labels and text area components

totalItems = new JLabel(“Total Items:”);

totalCost = new JLabel(“Total Cost:”);

items = new JTextArea();

cost = new JTextArea();
User Interfaces Revisited

153

 Essentials of the Java Programming Language
//Create buttons and make action listeners

purchase = new JButton(“Purchase”);

purchase.addActionListener(this);

reset = new JButton(“Reset”);

reset.addActionListener(this);

//Create a panel for the components

panel = new JPanel();

//Set panel layout to 2-column grid

//on a white background

panel.setLayout(new GridLayout(0,2));

panel.setBackground(Color.white);

//Add components to panel columns

//going left to right and top to bottom

getContentPane().add(panel);

panel.add(col1);

panel.add(col2);

panel.add(applechk);

panel.add(appleqnt);

panel.add(peachchk);

panel.add(peachqnt);

panel.add(pearchk);

panel.add(pearqnt);

panel.add(totalItems);

panel.add(items);

panel.add(totalCost);

panel.add(cost);

panel.add(cardNum);

panel.add(creditCard);

panel.add(custID);

panel.add(customer);

panel.add(reset);

panel.add(purchase);

} //End Constructor

public void actionPerformed(ActionEvent event){

Object source = event.getSource();

Integer applesNo, peachesNo, pearsNo, num;

Double cost;

String text, text2;
User Interfaces Revisited

154

 Essentials of the Java Programming Language
DataOrder order = new DataOrder();

//If Purchase button pressed . . .

if (source == purchase) {

//Get data from text fields

 order.cardnum = creditCard.getText();

 order.custID = customer.getText();

 order.apples = appleqnt.getText();

 order.peaches = peachqnt.getText();

 order.pears = pearqnt.getText();

//Calculate total items

 if (order.apples.length() > 0) {

//Catch invalid number error

 try {

 applesNo = Integer.valueOf(order.apples);

 order.itotal += applesNo.intValue();

 } catch(java.lang.NumberFormatException e) {

 appleqnt.setText(“Invalid Value”);

 }

 } else {

 /* else no need to change the total */

 }

if (order.peaches.length() > 0){

//Catch invalid number error

try{

peachesNo = Integer.valueOf(order.peaches);

order.itotal += peachesNo.intValue();

} catch(java.lang.NumberFormatException e) {

peachqnt.setText(“Invalid Value”);

}

} else {

/* else no need to change the total */

}

if (order.pears.length() > 0) {

//Catch invalid number error

try {

pearsNo = Integer.valueOf(order.pears);

order.itotal += pearsNo.intValue();

} catch(java.lang.NumberFormatException e) {
User Interfaces Revisited

155

 Essentials of the Java Programming Language
pearqnt.setText(“Invalid Value”);

}

} else {

/* else no need to change the total */

}

//Display running total

num = new Integer(order.itotal);

text = num.toString();

this.items.setText(text);

//Calculate and display running cost

order.icost = (order.itotal * 1.25);

cost = new Double(order.icost);

text2 = cost.toString();

this.cost.setText(text2);

try {

send.sendOrder(order);

} catch (java.rmi.RemoteException e) {

System.out.println(“Cannot send data to server”);

}

}

//If Reset button pressed

//Clear all fields

if (source == reset) {

creditCard.setText(““);

appleqnt.setText(““);

peachqnt.setText(““);

pearqnt.setText(““);

creditCard.setText(““);

customer.setText(““);

order.icost = 0;

cost = new Double(order.icost);

text2 = cost.toString();

this.cost.setText(text2);

order.itotal = 0;

num = new Integer(order.itotal);

text = num.toString();

this.items.setText(text);

}

}

User Interfaces Revisited

156

 Essentials of the Java Programming Language
public static void main(String[] args) {

RMIClient1Improved frame = new RMIClient1Improved();

frame.setTitle(“Fruit $1.25 Each”);

WindowListener l = new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

};

frame.addWindowListener(l);

frame.pack();

frame.setVisible(true);

if(System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityManager());

}

try {

String name = “//” + args[0] + “/Send”;

send = ((Send) Naming.lookup(name));

} catch (java.rmi.NotBoundException e) {

System.out.println(“Cannot look up remote server object”);

} catch(java.rmi.RemoteException e) {

System.out.println(“Cannot look up remote server object”);

} catch(java.net.MalformedURLException e) {

System.out.println(“Cannot look up remote server object”);

}

}

}

User Interfaces Revisited

157

2
112. Develop the Example
The program in its current form lets sending clients overwrite each other’s data before receiving
clients have a chance to get and process it. This lesson adapts the server code so all orders are
processed (nothing is overwritten), and are processed in the order received by the server.

This lesson shows you how to use object serialization in the server program to save the orders to
files where they can be retrieved in the order they were saved. This lesson also shows you how
to use the Collections API to maintain and display a list of unique customer IDs.

This lesson covers the following topics:

• Track Orders

• Maintain and Display a Customer List

• Exercises

• Code for This Lesson
158

 Essentials of the Java Programming Language
Track Orders

The changes to the example program so it uses serialization to keep track of the orders
received and processed are primarily in the RemoteServer class. See Code for This
Lesson for the full code listing.

sendOrder Method

The sendOrder method in the RemoteServer class accepts a DataOrder instance as
input, and stores each order in a separate file where the file name is a number. The first order
received is stored in a file named 1, the second order is stored in a file named 2, and so on.
To keep track of the file names, the value variable is incremented by 1 each time the
sendOrder method is called, converted to a String, and used for the file name in the
serialization process.

Objects are serialized by creating a serialized output stream and writing the object to the
output stream. In the code, the first line in the try block creates a FileOutputStream with
the file name to which the serialized object is to be written. The next line creates an
ObjectOutputFileStream from the file output stream. This is the serialized output stream
to which the order object is written in the last line of the try block.

public synchronized void sendOrder(DataOrder order) throws java.io.IOException {

value += 1;

String orders = String.valueOf(value);

try {

FileOutputStream fos = new FileOutputStream(orders);

oos = new ObjectOutputStream(fos);

oos.writeObject(order);

} catch (java.io.FileNotFoundException e) {

System.out.println(e.toString());

} finally {

if (oos != null) {

oos.close();

}

}

}

Develop the Example

159

 Essentials of the Java Programming Language
getOrder Method

The getOrder method in the RemoteServer class does what the sendOrder method
does in reverse using the get variable to keep track of which orders have been viewed. But
first, this method checks the value variable. If it is equal to zero, there are no orders to get
from a file and view, and if it is greater than the value in the get variable, there is at least one
order to get from a file and view. As each order is viewed, the get variable is incremented by
1.

public synchronized DataOrder getOrder() throws java.io.IOException {

DataOrder order = null;

ObjectInputStream ois = null;

if (value == 0) {

System.out.println(“No Orders To Process”);

}

if (value > get) {

get += 1;

String orders = String.valueOf(get);

try {

FileInputStream fis = new FileInputStream(orders);

ois = new ObjectInputStream(fis);

 order = (DataOrder)ois.readObject();

} catch (java.io.FileNotFoundException e) {

System.out.println(e.toString());

} catch (java.io.IOException e) {

System.out.println(e.toString());

} catch (java.lang.ClassNotFoundException e) {

System.out.println("No data available");

} finally {

if (oos != null) {

oos.close();

}

}

} else {

System.out.println(“No Orders To Process”);

}

return order;

}

Develop the Example

160

 Essentials of the Java Programming Language
Other Changes to Server Code

The sendOrder and getOrder methods are synchronized, declared to throw
java.io.IOException, and have a finally clause in their try and catch blocks.

The synchronized keyword lets the RemoteServer instance handle the get and send
requests one at a time. For example, there could be many instances of RMIClient1 sending
data to the server. The sendOrder method needs to write the data to file one request at a
time so the data sent by one RMIClient1 client does not overwrite or collide with the data
sent by another RMIClient1. The getOrder method is also synchronized so the server
can retrieve data for one RMIClient2 instance before retrieving data for another
RMIClient2 instance.

The finally clause is added to the try and catch blocks of the sendOrder and
getOrder methods to close the object output and input streams and free up any system
resources associated with them. The close method for the ObjectInputStream and
ObjectOutputStream classes throws java.io.IOException checked exception, which
as described in Chapter 6, Exception Handling, has to be either caught or declared in the
throws clause of the method signatures. Because a finally clause cannot specify an
exception, the best thing to do in this example is declare java.io.IOException in the
method signatures for the sendOrder and getOrder methods.

Adding the java.io.IOException checked exception to the method signatures means
the Send interface has to be changed so the sendOrder and getOrder methods throw
java.io.IOException in addition to RemoteException:

public interface Send extends Remote {

 public void sendOrder(DataOrder order)

throws RemoteException, java.io.IOException;

public DataOrder getOrder()

throws RemoteException, java.io.IOException;

}

This change to the Send interface means you have to add the catch clause shown below to
the RMIClient1 and RMIClient2 programs to handle the java.io.IOException
thrown by the sendOrder and getOrder methods.

RMIClient1

try{

send.sendOrder(order);

} catch (java.rmi.RemoteException e) {

System.out.println("Cannot send data to server");

 //Need to catch this exception

} catch (java.io.IOException e) {

System.out.println("Unable to write to file");

}

Develop the Example

161

 Essentials of the Java Programming Language
RMIClient2

if (source == view) {

try {

order = send.getOrder();

creditNo.setText(order.cardnum);

customerNo.setText(order.custID);

applesNo.setText(order.apples);

peachesNo.setText(order.peaches);

pearsNo.setText(order.pears);

cost = order.icost;

price = new Double(cost);

unit = price.toString();

icost.setText(unit);

items = order.itotal;

itms = new Integer(items);

i = itms.toString();

itotal.setText(i);

} catch (java.rmi.RemoteException e) {

System.out.println("Cannot access data in server");

//Need to catch this exception

} catch (java.io.IOException e) {

System.out.println("Unable to write to file");

}

}

Maintain and Display a Customer List

This section adds methods to the RMIClient2 program to manage a list of unique customer
IDs. The addCustomer method uses the Collections API to create the list and the getData
method uses the Collections API to retrieve the list. The getData method also uses Project
Swing APIs to display the customer list in a dialog box.

About Collections

A collection is an object that contains other objects, and provides methods for working on the
objects it contains. A collection can consist of the same types of objects, but can contain
objects of different types too. The customer IDs are all objects of type String and represent
the same type of information, a customer ID. You could also have a collection object that
contains objects of type String, Integer, and Double if it makes sense in your program.

The Collection classes available to use in programs implement Collection interfaces. The
Collection interface implementations for each Collection class let collection objects be
manipulated independently of their representation details.
Develop the Example

162

 Essentials of the Java Programming Language
There are three primary types of collection interfaces: List, Set, and Map. This section
focuses on the List and Set collections.

Set implementations do not permit duplicate elements, but List implementations do.
Duplicate elements have the same data type and value. For example, two customer IDs of
type String containing the value Zelda are duplicate; whereas, an element of type String
containing the value 1 and an element of type Integer containing the value 1 are not
duplicate.

The API provides two general-purpose Set implementations. HashSet, which stores its
elements in a hash table, and TreeSet, which stores its elements in a balanced binary tree
called a red-black tree. The example for this lesson uses the HashSet implementation
because it currently has the best performance. Figure 30 shows the Collection interfaces on
the right and the class hierarchy for the java.util.HashSet on the left. You can see that
the HashSet class implements the Set interface.

java.util.AbstractCollection
(interfaces)

java.util.Set java.util.List

java.util.AbstractCollection
(classes)

java.util.AbstractSet

java.util.HashSet

implements

Figure 30. Collections API Interfaces and Class Hierarchy

Create a Set

This example adapts the RMIClient2 class from Chapter 11, User Interfaces Revisited to
collect customer IDs in a Set and send the list of customer IDs to the command line
whenever the View button is clicked.

The collection object is a Set so if the same customer enters multiple orders, there is only
one element for that customer in the list of customer IDs. If the program tries to add an
element that is the same as an element already in the set, the second element is simply not
added. No error is thrown and there is nothing you have to do in your code.

The actionPerformed method in the RMIClient2 class calls the addCustomer method
to add a customer ID to the set when the order processor clicks the View button. The
addCustomer method implementation below adds the customer ID to the set and prints a
notice that the customer ID has been added.

...

Set s = new HashSet();

...
Develop the Example

163

 Essentials of the Java Programming Language
public void addCustomer(String custID) {

 s.add(custID);

System.out.println("Customer ID added");

}

Access Data in a Set

The getData method is called from the actionPerformed method in the RMIClient2
class when the order processor clicks the View button. The getData method sends the
elements currently in the set to the command line. The next section shows you how to display
the output in a dialog box.

To traverse the set, an object of type Iterator is returned from the set. The Iterator
object has a hasNext method that lets you test if there is another element in the set, a next
method that lets you move over the elements in the set, and a remove method that lets you
remove an element.

The example getData method shows two ways to access data in the set. The first way uses
an iterator and the second way simply calls System.out.println on the set. In the iterator
approach, the element returned by the next method is sent to the command line until there
are no more elements in the set.

Note: A HashSet does not guarantee the order of the elements in the set.
Elements are sent to the command line in the order they occur in the
set, but that order is not necessarily the same as the order in which
the elements were placed in the set.

public void getData() {

//Iterator approach

if (s.size()!=0) {

Iterator it = s.iterator();

while (it.hasNext()) {

System.out.println(it.next());

}

//Call System.out.println on the set

System.out.println(s);

} else {

System.out.println("No customer IDs available");

}

}

Develop the Example

164

 Essentials of the Java Programming Language
Here is the command-line output assuming three customer IDs (noel, munchkin, and
samantha) were added to the set. Note how the System.out.println(s) invocation
displays the three customer IDs between square brackets ([]) separated by commas.

Customer ID added

noel

munchkin

samantha

[noel, munchkin, samantha]

Display Data in a Dialog Box

The getData method is modified to display the set data in the dialog box shown in
Figure 31.

Figure 31. Display Customer Data in Dialog Box

public void getData() {

if (s.size()!=0) {

Iterator it = s.iterator();

while (it.hasNext()) {

System.out.println(it.next());

}

System.out.println(s);

JOptionPane.showMessageDialog(frame, s.toString(), "Customer List",

 JOptionPane.PLAIN_MESSAGE);

} else {

System.out.println("No customer IDs available");

}

}

Develop the Example

165

 Essentials of the Java Programming Language
Here is a description of the JOptionPane line that displays the dialog box:

Parameter Description

JOptionPane.showMessageDialog(frame) Show a simple message dialog box attached to this
application’s frame. This is the frame that is
instantiated in the main method as frame = new
RMIClient2().

s.toString() Display the contents of the set in the dialog box

"Customer List" Use this text for the title.

JOptionPane.PLAIN_MESSAGE This is a plain message dialog box so no icon such
as a question or warning symbol is included with the
message

Exercises

Modify the try and catch blocks in the RMIClient1 and RMIClient2 classes so they
display error text in a dialog box instead of sending it to the command line. See RMIClient2
on page 169 for the solution.

To test the program, run the RMIClient2 program without starting the server. You should
see the error dialog box shown in Figure 32.

Figure 32. Error Dialog
Develop the Example

166

 Essentials of the Java Programming Language
Code for This Lesson

• RemoteServer

• RMIClient2

RemoteServer Program

import java.awt.event.*;

import java.io.*;

import java.net.*;

import java.rmi.*;

import java.rmi.server.*;

class RemoteServer extends UnicastRemoteObject implements Send {

Integer num = null;

int value = 0, get = 0;

ObjectOutputStream oos = null;

public RemoteServer() throws RemoteException {

super();

}

public synchronized void sendOrder(DataOrder order)

throws java.io.IOException {

value += 1;

String orders = String.valueOf(value);

try {

FileOutputStream fos = new FileOutputStream(orders);

oos = new ObjectOutputStream(fos);

oos.writeObject(order);

} catch (java.io.FileNotFoundException e) {

System.out.println("File not found");

} finally {

if (oos != null) {

oos.close();

}

}

}

public synchronized DataOrder getOrder() throws java.io.IOException {

DataOrder order = null;

ObjectInputStream ois = null;

if (value == 0) {
Develop the Example

167

 Essentials of the Java Programming Language
System.out.println("No Orders To Process");

}

if (value > get) {

get += 1;

String orders = String.valueOf(get);

try {

FileInputStream fis = new FileInputStream(orders);

ois = new ObjectInputStream(fis);

order = (DataOrder)ois.readObject();

} catch (java.io.FileNotFoundException e) {

System.out.println("File not found");

} catch (java.io.IOException e) {

System.out.println("Unable to read file");

} catch (java.lang.ClassNotFoundException e){

System.out.println("No data available");

} finally {

if (oos != null) {

oos.close();

}

}

} else {

System.out.println("No Orders To Process");

}

return order;

}

public static void main(String[] args) {

if(System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityManager());

}

String name = "//kq6py.eng.sun.com/Send";

try {

Send remoteServer = new RemoteServer();

Naming.rebind(name, remoteServer);

System.out.println("RemoteServer bound");

} catch (java.rmi.RemoteException e) {

System.out.println("Cannot create remote server object");

} catch (java.net.MalformedURLException e) {

System.out.println("Cannot look up server object");

}

}

}

Develop the Example

168

 Essentials of the Java Programming Language
RMIClient2

import java.awt.Color;

import java.awt.GridLayout;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import java.net.*;

import java.rmi.*;

import java.rmi.server.*;

import java.io.FileInputStream.*;

import java.io.RandomAccessFile.*;

import java.io.File;

import java.util.*;

class RMIClient2 extends JFrame implements ActionListener {

JLabel creditCard, custID, apples, peaches, pears, total, cost, clicked;

JButton view, reset;

JPanel panel;

JTextArea creditNo, customerNo, applesNo, peachesNo, pearsNo, itotal, icost;

static Send send;

String customer;

Set s = new HashSet();

static RMIClient2 frame;

RMIClient2(){ //Begin Constructor

//Create labels

creditCard = new JLabel(“Credit Card:”);

custID = new JLabel(“Customer ID:”);

apples = new JLabel(“Apples:”);

peaches = new JLabel(“Peaches:”);

pears = new JLabel(“Pears:”);

total = new JLabel(“Total Items:”);

cost = new JLabel(“Total Cost:”);

//Create text areas

creditNo = new JTextArea();

customerNo = new JTextArea();

applesNo = new JTextArea();

peachesNo = new JTextArea();

pearsNo = new JTextArea();

itotal = new JTextArea();

icost = new JTextArea();
Develop the Example

169

 Essentials of the Java Programming Language
//Create buttons

view = new JButton(“View Order”);

view.addActionListener(this);

reset = new JButton(“Reset”);

reset.addActionListener(this);

//Create panel for 2-column layout

//Set white background color

panel = new JPanel();

panel.setLayout(new GridLayout(0,2));

panel.setBackground(Color.white);

//Add components to panel columns

//going left to right and top to bottom

getContentPane().add(panel);

panel.add(creditCard);

panel.add(creditNo);

panel.add(custID);

panel.add(customerNo);

panel.add(apples);

panel.add(applesNo);

panel.add(peaches);

panel.add(peachesNo);

panel.add(pears);

panel.add(pearsNo);

panel.add(total);

panel.add(itotal);

panel.add(cost);

panel.add(icost);

panel.add(view);

panel.add(reset);

} //End Constructor

public void addCustomer(String custID) {

System.out.println(custID);

s.add(custID);

System.out.println(“Customer ID added”);

}

public void getData() {

if (s.size()!=0) {

Iterator it = s.iterator();

while (it.hasNext()) {

System.out.println(it.next());
Develop the Example

170

 Essentials of the Java Programming Language
}

System.out.println(s);

JOptionPane.showMessageDialog(frame, s.toString(), “Customer List”,

JOptionPane.PLAIN_MESSAGE);

} else {

System.out.println(“No customer IDs available”);

}

}

public void actionPerformed(ActionEvent event) {

Object source = event.getSource();

String unit, i;

double cost;

Double price;

int items;

Integer itms;

DataOrder order = new DataOrder();

//If View button pressed

//Get data from server and display it

if (source == view) {

try {

order = send.getOrder();

creditNo.setText(order.cardnum);

customerNo.setText(order.custID);

//Call addCustomer method

addCustomer(order.custID);

applesNo.setText(order.apples);

peachesNo.setText(order.peaches);

pearsNo.setText(order.pears);

cost = order.icost;

price = new Double(cost);

unit = price.toString();

icost.setText(unit);

items = order.itotal;

itms = new Integer(items);

i = itms.toString();

itotal.setText(i);

} catch (java.rmi.RemoteException e) {

System.out.println(“Cannot access data in server”);

} catch (java.io.IOException e) {

System.out.println(“Unable to write to file”);

}

Develop the Example

171

 Essentials of the Java Programming Language
getData();

}

//If Reset button pressed

//Clear all fields

if (source == reset) {

creditNo.setText(““);

customerNo.setText(““);

applesNo.setText(““);

peachesNo.setText(““);

pearsNo.setText(““);

itotal.setText(““);

icost.setText(““);

}

}

public static void main(String[] args) {

frame = new RMIClient2();

frame.setTitle(“Fruit Order”);

WindowListener l = new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

};

frame.addWindowListener(l);

frame.pack();

frame.setVisible(true);

if (System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityManager());

}

try {

String name = “//” + args[0] + “/Send”;

send = ((Send) Naming.lookup(name));

} catch (java.rmi.RemoteException e) {

System.out.println(“Cannot create remote server object”);

} catch (java.net.MalformedURLException e) {

System.out.println(“Cannot look up server object”);

} catch (java.rmi.NotBoundException e) {

System.out.println(“Cannot access data in server”);

}

}

}

Develop the Example

172

3
113. Internationalization
More and more companies, large and small, are doing business around the world using many
different languages. Effective communication is always good business, so it follows that adapting
an application to a local language adds to profitability through better communication and
increased satisfaction.

The Java 2 platform provides internationalization features that let you separate culturally
dependent data from the application (internationalization) and adapt it to as many cultures as
needed (localization).

This lesson takes the two client programs from Chapter 12, Develop the Example,
internationalizes them and localizes the text for France, Germany, and the United States.

This lesson covers the following topics:

• Identify Culturally Dependent Data

• Create Keyword and Value Pair Files

• Internationalize Application Text

• Internationalize Numbers

• Compile and Run the Application

• Exercises

• Code for This Lesson
173

 Essentials of the Java Programming Language
Identify Culturally Dependent Data

To internationalize an application, the first thing you need to do is identify the culturally
dependent data in your application. Culturally-dependent data is any data that varies from
one culture or country to another. Text is the most obvious and pervasive example of
culturally dependent data, but other things like number formats, sounds, times, and dates
should be considered too.

The RMIClient1 and RMIClient2 classes have culturally-dependent data visible to the
user. This data is included in the bullet list below. Figure 33 shows the Fruit Order client,
which displays some of the culturally-dependent data mentioned in the bullet list.

Figure 33. Culturally-Dependent Data

• Titles and labels (window titles, column heads, and left column labels)

• Buttons (Purchase, Reset, View)

• Numbers (values for item and cost totals)

• Error messages

Although the application has a server program, the server program is not being
internationalized and localized. The only visible culturally-dependent data in the server
program is the error message text. The server program runs in one place and the assumption
is that it is not seen by anyone other than the system administrator who understands the
language in which the error messages is hard coded. In this example, that language is United
States English.

All error messages in RMIClient1 and RMIClient2 programs are handled in try and
catch blocks. This way you have access to the error text for translation into another
language.

//Access to error text

public void someMethod(){

try {
Internationalization

174

 Essentials of the Java Programming Language
//do something

} catch (java.util.NoSuchElementException {

System.out.println(“Print some error text”);

}

}

Methods can be coded to declare the exception in their throws clause, but this way you
cannot access the error message text thrown when the method tries to access unavailable
data in the set. In this case, the system-provided text for this error message is sent to the
command line regardless of the locale in use for the application. The point here is it is always
better to use try and catch blocks wherever possible if there is any chance the application
will be internationalized so you can access and localize the error message text.

//No access to error text

public void someMethod() throws java.util.NoSuchElementException{

//do something

}

Here is a list of the title, label, button, number, and error text visible to the user, and therefore,
subject to internationalization and localization. This data was taken from both the
RMIClient1 and RMIClient2 classes.

• Labels: Apples, Peaches, Pears, Total Items, Total Cost, Credit Card, Customer ID

• Titles: Fruit $1.25 Each, Select Items, Specify Quantity

• Buttons: Reset, View, Purchase

• Number Values: Value for total items, Value for total cost

• Errors: Invalid Value, Cannot send data to server, Cannot look up remote server object,
No data available, No customer IDs available, Cannot access data in server

Create Keyword and Value Pair Files

Because all text visible to the user will be moved out of the application and translated, your
application needs a way to access the translated text during execution. This is done with
properties files that specify a list of keyword and value pairs for each language to be used.
The application code loads the properties file for a given language and references the
keywords instead of using hard-coded text.

So for example, you could map the keyword purchase to Kaufen in the German file, Achetez
in the French file, and Purchase in the United States English file. In your application, you load
the properties file for the language you want to use and reference the keyword purchase in
your code. During execution when the purchase keyword is encountered, Achetez, Kaufen,
or Purchase is loaded depending on the language file in use.

Keyword and value pairs are stored in properties files because they contain information
about a program’s properties or characteristics. Property files are plain-text format, and you
need one file for each language you intend to use.
Internationalization

175

 Essentials of the Java Programming Language
In this example, there are three properties files, one each for the English, French, and
German translations. Because this application currently uses hard-coded English text, the
easiest way to begin the internationalization process is to use the hard-coded text to set up
the key and value pairs for the English properties file.

The properties files follow a naming convention so the application can locate and load the
correct file at run time. The naming convention uses language and country codes which you
should make part of the file name. Both the language and country are included because the
same language can vary between countries. For example, United States English and
Australian English are a little different, and Swiss German and Austrian German both differ
from each other and from the German spoken in Germany.

These are the names of the properties files for the German (de_DE), French (fr_FR), and
American English (en_US) translations where de, fr, and en indicate the German
(Deutsche), French, and English languages; and DE, FR, and US indicate Germany
(Deutschland), France, and the United States:

• MessagesBundle_de_DE.properties

• MessagesBundle_en_US.properties

• MessagesBundle_fr_FR.properties

This is the English language properties file. Keywords are to the left of the equals (=) sign,
and text values are on the right.

apples = Apples:

peaches = Peaches:

pears = Pears:

items = Total Items:

cost=Total Cost:

card=Credit Card:

customer=Customer ID:

title=Fruit 1.25 Each

1col=Select Items

2col=Specify Quantity

reset=Reset

view=View

purchase = Purchase

invalid = Invalid Value

send = Cannot send data to server

nolookup = Cannot look up remote server object

nodata = No data available

noID = No customer IDs available

noserver = Cannot access data in server

You can hand this file off to your French and German translators and ask them to provide the
French and German equivalents for the text to the right of the equals (=) sign. Keep a copy
because you will need the keywords to internationalize your application text.
Internationalization

176

 Essentials of the Java Programming Language
The properties file with German translations produces the fruit order client user interface
shown in Figure 34.

Figure 34. German User Interface

German Translations

apples=Äpfel:

peaches=Birnen:

pears=Pfirsiche:

items=Anzahl Früchte:

cost=Gesamtkosten:

card=Kreditkarte:

customer=Kundenidentifizierung:

title=Früchte 1,25 jede

1col=Auswahl treffen

2col=Menge angeben

reset=Zurücksetzen

view=Sehen Sie an

purchase=Kaufen

invalid=Ungültiger Wert

send=Datenübertragung zum Server nicht möglich

nolookup=Das Server läßt sich nicht zu finden

nodata=Keine Daten verfügbar

noID=Keine Kundenidentifizierungen verfügbar

noserver=Kein Zugang zu den Daten beim Server

The properties file with French translations produces the fruit order client user interface
shown in Figure 35.
Internationalization

177

 Essentials of the Java Programming Language
Figure 35. French User Interface

French Translations

apples=Pommes:

peaches=Pêches:

pears=Poires:

items=Partial total:

cost=Prix total:

card=Carte de Crédit

customer=Numêro de client:

title=Fruit 1,25 pièce

1col=Choisissez les éléments

2col= Indiquez la quantité

reset=Réinitialisez

view=Visualisez

purchase=Achetez

invalid=Valeur incorrecte

send=Les données n’ont pu être envoyées au serveur

nolookup=Accès impossible à l’objet du serveur distant

nodata=Aucune donnée disponible

noID=dentifiant du client indisponible

noserver=Accès aux données du serveur impossible
Internationalization

178

 Essentials of the Java Programming Language
Internationalize Application Text

This section walks through internationalizing the RMIClient1 code. The RMIClient2 code
is almost identical so you can apply the same steps to that program on your own.

Instance Variables

In addition to adding an import statement for the java.util.* package where the
internationalization classes are, this program needs the following instance variable
declarations for the internationalization process:

 //Initialized in main method

 static String language, country;

 Locale currentLocale;

 static ResourceBundle messages;

//Initialized in actionPerformed method

 NumberFormat numFormat;

main Method

The program is designed so the user specifies the language to use at the command line. So,
the first change to the main method is to add the code to check the command line
parameters. Specifying the language at the command line means once the application is
internationalized, you can easily change the language without recompiling.

Note: This style of programming makes it possible for the same user to run
the program in different languages, but in most cases, the program
will use one language and not rely on command-line arguments to
set the country and language.

The String[] args parameter to the main method contains arguments passed to the
program from the command line. This code expects 3 command line arguments when the
user wants a language other than English. The first argument is the name of the machine on
which the program is running. This value is passed to the program when it starts and is
needed because this is a networked program using the RMI API.

The other two arguments specify the language and country codes. If the program is invoked
with 1 command line argument (the machine name only), the country and language are
assumed to be United States English.

As an example, here is how the program is started with command line arguments to specify
the machine name and German language (de DE). Everything goes on one line.

java -Djava.rmi.server.codebase= http://kq6py/~zelda/classes/
-Djava.security.policy=java.policy RMIClient1 kq6py.eng.sun.com de DE
Internationalization

179

 Essentials of the Java Programming Language
The main method code appears below. The currentLocale instance variable is initialized
from the language and country information passed in at the command line, and the
messages instance variable is initialized from the currentLocale.

The messages object provides access to the translated text for the language in use. It takes
two parameters: the first parameter MessagesBundle is the prefix of the family of
translation files this application uses, and the second parameter is the Locale object that
tells the ResourceBundle which translation to use. If the application is invoked with de DE
command line parameters, this code creates a ResourceBundle variable to access the
MessagesBundle_de_DE.properties file.

public static void main(String[] args){

//Check for language and country codes

if (args.length != 3) {

language = new String(“en”);

country = new String (“US”);

System.out.println(“English”);

} else {

language = new String(args[1]);

country = new String(args[2]);

System.out.println(language + country);

}

//Create locale and resource bundle
currentLocale = new Locale(language, country);

messages = ResourceBundle.getBundle(“MessagesBundle”, currentLocale);

WindowListener l = new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}

};

//Create the RMIClient1 object

RMIClient1 frame = new RMIClient1();

frame.addWindowListener(l);

frame.pack();

frame.setVisible(true);

if (System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityManager());

}

try {

String name = “//” + args[0] + “/Send”;

send = ((Send) Naming.lookup(name));

} catch (java.rmi.NotBoundException e) {

System.out.println(messages.getString(“nolookup”));
Internationalization

180

 Essentials of the Java Programming Language
} catch(java.rmi.RemoteException e) {

System.out.println(messages.getString(“nolookup”));

} catch(java.net.MalformedURLException e) {

System.out.println(messages.getString(“nolookup”));

}

}

The applicable error text is accessed by calling the getString method on the
ResourceBundle, and passing it the keyword that maps to the applicable error text.

try {

String name = “//” + args[0] + “/Send”;

send = ((Send) Naming.lookup(name));

} catch (java.rmi.NotBoundException e) {
System.out.println(messages.getString(“nolookup”));

} catch(java.rmi.RemoteException e) {

System.out.println(messages.getString(“nolookup”));

} catch(java.net.MalformedURLException e) {

System.out.println(messages.getString(“nolookup”));

}

Constructor

The window title is set by calling the getString method on the ResourceBundle, and
passing it the keyword that maps to the title text. You must pass the keyword exactly as it
appears in the translation file, or you will get a runtime error indicating the resource is
unavailable.

RMIClient1(){

//Set window title

setTitle(messages.getString(“title”));

The next thing the constructor does is use the args parameter to look up the remote server
object. If there are any errors in this process, the catch statements get the applicable error
text from the ResourceBundle and print it to the command line. User interface objects that
display text, such as JLabel and JButton, are created the same way:

 //Create left and right column labels

col1 = new JLabel(messages.getString(“1col”));

col2 = new JLabel(messages.getString(“2col”));

...

//Create buttons and make action listeners

purchase = new JButton(messages.getString(“purchase”));

purchase.addActionListener(this);

reset = new JButton(messages.getString(“reset”));

reset.addActionListener(this);
Internationalization

181

 Essentials of the Java Programming Language
actionPerformed Method

In the actionPerformed method, the Invalid Value error is caught and translated. The
actionPerformed method also calculates item and cost totals, translates them to the
correct format for the language currently in use, and displays them in the user interface.

if (order.apples.length() > 0) {

//Catch invalid number error

try {

applesNo = Integer.valueOf(order.apples);

order.itotal += applesNo.intValue();

} catch(java.lang.NumberFormatException e) {

appleqnt.setText(messages.getString(“invalid”));

}

} else {

/* else no need to change the total */

}

Internationalize Numbers

Use a NumberFormat object to translate numbers to the correct format for the language in
use. A NumberFormat object is created from the currentLocale. The information in the
currentLocale tells the NumberFormat object what number format to use.

Once you have a NumberFormat object, all you do is pass in the value you want translated,
and you receive a String that contains the number in the correct format. The value can be
passed in as any data type used for numbers such as int, Integer, double, or Double.
No code to convert an Integer to an int and back again is needed.

//Create number formatter

numFormat = NumberFormat.getNumberInstance(currentLocale);

//Display running total

text = numFormat.format(order.itotal);

this.items.setText(text);

//Calculate and display running cost

order.icost = (order.itotal * 1.25);

text2 = numFormat.format(order.icost);

this.cost.setText(text2);

try {

send.sendOrder(order);

} catch (java.rmi.RemoteException e) {

System.out.println(messages.getString(“send”));

} catch (java.io.IOException e) {

System.out.println("nodata");

}

Internationalization

182

 Essentials of the Java Programming Language
Compile and Run the Application

Here are the summarized steps for compiling and running the example program. The
complete code listings are on page 186. The important thing is when you start the client
programs, include language and country codes if you want a language other than United
States English.

Compile

UNIX

javac Send.java

javac RemoteServer.java

javac RMIClient2.java

javac RMIClient1.java

rmic -d . RemoteServer

cp RemoteServer*.class /home/zelda/public_html/classes

cp Send.class /home/zelda/public_html/classes

cp DataOrder.class /home/zelda/public_html/classes

Win32

javac Send.java

javac RemoteServer.java

javac RMIClient2.java

javac RMIClient1.java

rmic -d . RemoteServer

copy RemoteServer*.class \home\zelda\public_html\classes

copy Send.class \home\zelda\public_html\classes

copy DataOrder.class \home\zelda\public_html\classes

Start the RMI Registry

 UNIX

unsetenv CLASSPATH

rmiregistry &

Win32

set CLASSPATH=

start rmiregistry
Internationalization

183

 Essentials of the Java Programming Language
Start the Server

UNIX

java -Djava.rmi.server.codebase=http://kq6py/~zelda/classes

-Dtava.rmi.server.hostname=kq6py.eng.sun.com

-Djava.security.policy=java.policy RemoteServer

Win32

java -Djava.rmi.server.codebase=file:c:\home\zelda\public_html\classes

-Djava.rmi.server.hostname=kq6py.eng.sun.com

-Djava.security.policy=java.policy RemoteServer

Start the RMIClient1 Program in German

Note the addition of de DE for the German language and country at the end of the line.

UNIX

java -Djava.rmi.server.codebase= http://kq6py/~zelda/classes/

-Djava.security.policy=java.policy RMIClient1 kq6py.eng.sun.com de DE

 Win32

java -Djava.rmi.server.codebase= file:c:\home\zelda\classes\

-Djava.security.policy=java.policy RMIClient1 kq6py.eng.sun.com de DE

Start the RMIClient2 Program in French

Note the addition of fr FR for the French language and country at the end of the line.

UNIX

java -Djava.rmi.server.codebase= http://kq6py/~zelda/classes

-Djava.rmi.server.hostname=kq6py.eng.sun.com

-Djava.security.policy=java.policy RMIClient2 kq6py.eng.sun.com fr FR

Win32

java -Djava.rmi.server.codebase= file:c:\home\zelda\public_html\classes

-Djava.rmi.server.hostname=kq6py.eng.sun.com

-Djava.security.policy=java.policy RMIClient2
kq6py.eng.sun.com/home/zelda/public_html fr FR
Internationalization

184

 Essentials of the Java Programming Language
Exercises

A real-world scenario for an ordering application like this might be that RMIClient is an
applet embedded in a web page. When orders are submitted, order processing staff run
RMIClient2 as applications from their local machines.

So, an interesting exercise is to convert the RMIClient1 class to its applet equivalent. The
translation files would be loaded by the applet from the same directory from which the
browser loads the applet class.

One way is to have a separate applet for each language with the language and country codes
hard coded. Your web page can let them choose a language by clicking a link that launches a
web page with the appropriate applet. The source code files for the English, French, and
German applets starts on page 220 in the Appendix A, Code Listings.

This is the HTML code to load the French applet on a web page.

<HTML>

<BODY>

<APPLET CODE=RMIFrenchApp.class WIDTH=300 HEIGHT=300> </APPLET>

</BODY> </HTML>

To run an applet written with Java APIs in a browser, the browser must be enabled for the
Java 2 Platform. If your browser is not enabled for the Java 2 Platform, you have to use the
appletviewer command to run the applet or install Java Plug-in. Java Plug-in lets you run
applets on web pages under the 1.2 version of the Java virtual machine (JVM) instead of the
web browser’s default JVM.

To use appletviewer, type the following where rmiFrench.html is the HTML file for the
French applet.

appletviewer rmiFrench.html

Another improvement to the program as it currently stands would be enhancing the error
message text. You can locate the errors in the Java API docs and use the information there to
make the error message text user friendly by providing more specific information.

You might also want to adapt the client programs to catch and handle the error thrown when
an incorrect keyword is used. This is the stack trace provided by the system when this type of
error occurs:

Exception in thread “main” java.util.MissingResourceException: Can’t find
resource at java.util.ResourceBundle.getObject(Compiled Code) at
java.util.ResourceBundle.getString(Compiled Code) at
RMIClient1.<init>(Compiled Code) at RMIClient1.main(Compiled Code)
Internationalization

185

 Essentials of the Java Programming Language
Code for This Lesson

• RMIClient1

• RMIClient2

• RMIFrenchApp

RMIClient1

import java.awt.Color;

import java.awt.GridLayout;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import java.net.*;

import java.rmi.*;

import java.rmi.server.*;

import java.util.*;

import java.text.*;

class RMIClient1 extends JFrame implements ActionListener {

JLabel col1, col2;

JLabel totalItems, totalCost;

JLabel cardNum, custID;

JLabel applechk, pearchk, peachchk;

JButton purchase, reset;

JPanel panel;

JTextField appleqnt, pearqnt, peachqnt;

JTextField creditCard, customer;

JTextArea items, cost;

static Send send;

//Internationalization variables

static Locale currentLocale;

static ResourceBundle messages;

static String language, country;

NumberFormat numFormat;

RMIClient1() { //Begin Constructor

setTitle(messages.getString(“title”));

//Create left and right column labels

col1 = new JLabel(messages.getString(“1col”));
Internationalization

186

 Essentials of the Java Programming Language
col2 = new JLabel(messages.getString(“2col”));

//Create labels and text field components

applechk = new JLabel(“ “ + messages.getString(“apples”));

appleqnt = new JTextField();

appleqnt.addActionListener(this);

pearchk = new JLabel(“ “ + messages.getString(“pears”));

pearqnt = new JTextField();

pearqnt.addActionListener(this);

peachchk = new JLabel(“ “ + messages.getString(“peaches”));

peachqnt = new JTextField();

peachqnt.addActionListener(this);

cardNum = new JLabel(“ “ + messages.getString(“card”));

creditCard = new JTextField();

pearqnt.setNextFocusableComponent(creditCard);

customer = new JTextField();

custID = new JLabel(“ “ + messages.getString(“customer”));

//Create labels and text area components

totalItems = new JLabel(“ “ + messages.getString(“items”));

totalCost = new JLabel(“ “ + messages.getString(“cost”));

items = new JTextArea();

cost = new JTextArea();

//Create buttons and make action listeners

purchase = new JButton(messages.getString(“purchase”));

purchase.addActionListener(this);

reset = new JButton(messages.getString(“reset”));

reset.addActionListener(this);

//Create a panel for the components

panel = new JPanel();

//Set panel layout to 2-column grid

//on a white background

panel.setLayout(new GridLayout(0,2));

panel.setBackground(Color.white);

//Add components to panel columns

//going left to right and top to bottom

getContentPane().add(panel);

panel.add(col1);
Internationalization

187

 Essentials of the Java Programming Language
panel.add(col2);

panel.add(applechk);

panel.add(appleqnt);

panel.add(peachchk);

panel.add(peachqnt);

panel.add(pearchk);

panel.add(pearqnt);

panel.add(totalItems);

panel.add(items);

panel.add(totalCost);

panel.add(cost);

panel.add(cardNum);

panel.add(creditCard);

panel.add(custID);

panel.add(customer);

panel.add(reset);

panel.add(purchase);

} //End Constructor

public void actionPerformed(ActionEvent event) {

Object source = event.getSource();

Integer applesNo, peachesNo, pearsNo, num;

Double cost;

String text, text2;

DataOrder order = new DataOrder();

//If Purchase button pressed

if (source == purchase) {

//Get data from text fields

order.cardnum = creditCard.getText();

order.custID = customer.getText();

order.apples = appleqnt.getText();

order.peaches = peachqnt.getText();

order.pears = pearqnt.getText();

//Calculate total items

if (order.apples.length() > 0) {

//Catch invalid number error

try {

applesNo = Integer.valueOf(order.apples);

order.itotal += applesNo.intValue();

} catch (java.lang.NumberFormatException e) {

appleqnt.setText(messages.getString(“invalid”));
Internationalization

188

 Essentials of the Java Programming Language
}

} else {

/* else no need to change the total */

}

if (order.peaches.length() > 0) {

//Catch invalid number error

try {

peachesNo = Integer.valueOf(order.peaches);

order.itotal += peachesNo.intValue();

} catch(java.lang.NumberFormatException e) {

peachqnt.setText(messages.getString(“invalid”));

}

} else {

/* else no need to change the total */

}

if (order.pears.length() > 0){

//Catch invalid number error

try {

pearsNo = Integer.valueOf(order.pears);

order.itotal += pearsNo.intValue();

} catch (java.lang.NumberFormatException e) {

pearqnt.setText(messages.getString(“invalid”));

}

} else {

/* else no need to change the total */

}

//Create number formatter

numFormat = NumberFormat.getNumberInstance(currentLocale);

//Display running total

text = numFormat.format(order.itotal);

this.items.setText(text);

//Calculate and display running cost

order.icost = (order.itotal * 1.25);

text2 = numFormat.format(order.icost);

this.cost.setText(text2);

try{

send.sendOrder(order);

} catch (java.rmi.RemoteException e) {

System.out.println(messages.getString(“send”));

} catch (java.io.IOException e) {
Internationalization

189

 Essentials of the Java Programming Language
System.out.println(“nodata");

}

}

//If Reset button pressed

//Clear all fields

if (source == reset) {

creditCard.setText(““);

appleqnt.setText(““);

peachqnt.setText(““);

pearqnt.setText(““);

creditCard.setText(““);

customer.setText(““);

order.icost = 0;

cost = new Double(order.icost);

text2 = cost.toString();

this.cost.setText(text2);

order.itotal = 0;

num = new Integer(order.itotal);

text = num.toString();

this.items.setText(text);

}

}

public static void main(String[] args) {

if (args.length != 3) {

language = new String(“en”);

country = new String (“US”);

System.out.println(“English”);

} else {

language = new String(args[1]);

country = new String(args[2]);

System.out.println(language + country);

}

currentLocale = new Locale(language, country);

messages = ResourceBundle.getBundle(“MessagesBundle”, currentLocale);

WindowListener l = new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

};

RMIClient1 frame = new RMIClient1();
Internationalization

190

 Essentials of the Java Programming Language
frame.addWindowListener(l);

frame.pack();

frame.setVisible(true);

if(System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityManager());

}

try {

String name = “//” + args[0] + “/Send”;

send = ((Send) Naming.lookup(name));

} catch (java.rmi.NotBoundException e) {

System.out.println(messages.getString(“nolookup”));

} catch(java.rmi.RemoteException e){

System.out.println(messages.getString(“nolookup”));

} catch(java.net.MalformedURLException e) {

System.out.println(messages.getString(“nollokup”));

}

}

}

RMIClient2

import java.awt.Color;

import java.awt.GridLayout;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import java.net.*;

import java.rmi.*;

import java.rmi.server.*;

import java.io.FileInputStream.*;

import java.io.RandomAccessFile.*;

import java.io.File;

import java.util.*;

import java.text.*;

class RMIClient2 extends JFrame implements ActionListener {

JLabel creditCard, custID, apples, peaches, pears, total, cost, clicked;

JButton view, reset;

JPanel panel;

JTextArea creditNo, customerNo, applesNo, peachesNo, pearsNo, itotal, icost;

static Send send;

String customer;
Internationalization

191

 Essentials of the Java Programming Language
Set s = null;

RMIClient2 frame;

//Internationalization variables

static Locale currentLocale;

static ResourceBundle messages;

static String language, country;

NumberFormat numFormat;

RMIClient2(){ //Begin Constructor

setTitle(messages.getString(“title”));

//Create labels

creditCard = new JLabel(messages.getString(“card”));

custID = new JLabel(messages.getString(“customer”));

apples = new JLabel(messages.getString(“apples”));

peaches = new JLabel(messages.getString(“peaches”));

pears = new JLabel(messages.getString(“pears”));

total = new JLabel(messages.getString(“items”));

cost = new JLabel(messages.getString(“cost”));

//Create text areas

creditNo = new JTextArea();

customerNo = new JTextArea();

applesNo = new JTextArea();

peachesNo = new JTextArea();

pearsNo = new JTextArea();

itotal = new JTextArea();

icost = new JTextArea();

//Create buttons

view = new JButton(messages.getString(“view”));

view.addActionListener(this);

reset = new JButton(messages.getString(“reset”));

reset.addActionListener(this);

//Create panel for 2-column layout

//Set white background color

panel = new JPanel();

panel.setLayout(new GridLayout(0,2));

panel.setBackground(Color.white);

//Add components to panel columns

//going left to right and top to bottom
Internationalization

192

 Essentials of the Java Programming Language
getContentPane().add(panel);

panel.add(creditCard);

panel.add(creditNo);

panel.add(custID);

panel.add(customerNo);

panel.add(apples);

panel.add(applesNo);

panel.add(peaches);

panel.add(peachesNo);

panel.add(pears);

panel.add(pearsNo);

panel.add(total);

panel.add(itotal);

panel.add(cost);

panel.add(icost);

panel.add(view);

panel.add(reset);

} //End Constructor

//Create list of customer IDs

public void addCustomer(String custID){

s.add(custID);

System.out.println("Customer ID added");

}

//Get customer IDs

public void getData(){

if (s.size()!=0) {

Iterator it = s.iterator();

while (it.hasNext()) {

System.out.println(it.next());

}

System.out.println(s);

JOptionPane.showMessageDialog(frame, s.toString(), "Customer List",

JOptionPane.PLAIN_MESSAGE);

} else {

System.out.println("No customer IDs available");

}

}

public void actionPerformed(ActionEvent event) {

Object source = event.getSource();
Internationalization

193

 Essentials of the Java Programming Language
String unit, i;

double cost;

Double price;

int items;

Integer itms;

DataOrder order = new DataOrder();

//If View button pressed

//Get data from server and display it

if (source == view) {

try {

order = send.getOrder();

creditNo.setText(order.cardnum);

customerNo.setText(order.custID);

//Get customer ID and add to list

addCustomer(order.custID);

applesNo.setText(order.apples);

peachesNo.setText(order.peaches);

pearsNo.setText(order.pears);

//Create number formatter

numFormat = NumberFormat.getNumberInstance(currentLocale);

price = new Double(order.icost);

unit = numFormat.format(price);

icost.setText(unit);

itms = new Integer(order.itotal);

i = numFormat.format(order.itotal);

itotal.setText(i);

} catch (java.rmi.RemoteException e) {

System.out.println(“Cannot access data in server”);

}catch (java.io.IOException e) {

System.out.println("nodata");

}

//Get Customer Information

getData();

}

//If Reset button pressed

//Clear all fields

if(source == reset){

creditNo.setText(““);

customerNo.setText(““);

applesNo.setText(““);

peachesNo.setText(““);
Internationalization

194

 Essentials of the Java Programming Language
pearsNo.setText(““);

itotal.setText(““);

icost.setText(““);

}

}

public static void main(String[] args) {

if(args.length != 3) {

language = new String(“en”);

country = new String (“US”);

System.out.println(“English”);

} else {

language = new String(args[1]);

country = new String(args[2]);

System.out.println(language + country);

}

currentLocale = new Locale(language, country);

messages = ResourceBundle.getBundle(“MessagesBundle”, currentLocale);

WindowListener l = new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

};

RMIClient2 frame = new RMIClient2();

frame.addWindowListener(l);

frame.pack();

frame.setVisible(true);

if(System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityManager());

}

try {

String name = “//” + args[0] + “/Send”;

send = ((Send) Naming.lookup(name));

} catch (java.rmi.NotBoundException e) {

System.out.println(messages.getString(“nolookup”));

} catch(java.rmi.RemoteException e) {

System.out.println(messages.getString(“nolookup”));

} catch(java.net.MalformedURLException e) {

System.out.println(messages.getString(“nolookup”));

}

}

}

Internationalization

195

4
114. Packages and JAR File Format
A package is a convenient way to organize groups of related classes so they are easier to locate
and use, and in development, you should organize application files into packages too. Packages
also help you control access to class data at run time.

When your application is fully tested, debugged, and ready for deployment, use the Java Archive
file format to bundle the application. JAR file format lets you bundle executable files with any
other related application files so they can be deployed as one unit.

This lesson shows you how to organize the program files from the Chapter 13,
Internationalization lesson into packages and deploy the executable and other related files to
production using JAR file format.

This lesson covers the following topics:

• Set up Class Packages

• Compile and Run the Example

• Exercises
196

 Essentials of the Java Programming Language
Set up Class Packages

It is easy to organize class files into packages. All you do is put related class files in the same
directory, give the directory a name that relates to the purpose of the classes, and add a line
to the top of each class file that declares the package name, which is the same as the
directory name where they reside.

For example, the class and other related files for the program files from Chapter 13 can be
divided into three groups of files: fruit order client, view order client, and server files. Although
these three sets of classes are related to each other, they have different functions and will be
deployed separately.

Create the Directories

To organize the internationalization program into three packages, you could create the
following three directories and move the listed source files into them:

• client1 package/directory

- RMIEnglishApp.java

- RMIFrenchApp.java

- RMIGermanApp.java

- MessagesBundle_de_DE.properties

- MessagesBundle_en_US.properties

- MessagesBundle_fr_FR.properties

- index.html

- rmiFapp.html

- rmiGapp.html

- rmiEapp.html

- java.policy

• client2 package/directory

- RMIClient2.java

- MessagesBundle_de_DE.properties

- MessagesBundle_en_US.properties

- MessagesBundle_fr_FR.properties

- java.policy

• server package/directory

- DataOrder.java

- RemoteServer.java

- Send.java

- java.policy
Packages and JAR File Format

197

 Essentials of the Java Programming Language
Declare the Packages

Each *.java file needs a package declaration at the top that reflects the name of the
directory. Also, the fruit order (client1 package) and view order (client2 package)
client class files need an import statement for the server package because they have to
access the remote server object at runtime. For example, the package declaration and import
statements for the RMIClient2 class look like this:

//package declaration

package client2;

//import statements

import java.awt.Color;

import java.awt.GridLayout;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import java.net.*;

import java.rmi.*;

import java.rmi.server.*;

import java.util.*;

import java.text.*;

//import server package

import server.*;

Note: If you write an application that will be available for sale, it is
important to choose package names that do not conflict with
package names from other companies. A good way to avoid this
problem is to prefix the package name with com and your company
name. So, for example, the server package could be named
com.mycompanyname.server.

Make Classes and Fields Accessible

With class files organized into packages, you have to declare the server classes in the
server directory public so they can be instantiated by client programs, which are created
from classes in the client1 and client2 directories. If you do not make the server classes
public, they can only be instantiated by an object created from a class within the same
package.

To make it possible for client programs to access the fruit order data, the fields of the
DataOrder class have to be public too. The RemoteServer class on page 218 and Send
217 interface need to be public classes, but their fields do not need to be public because
they do not have public data. Fields and methods without an access specifier such as
Packages and JAR File Format

198

 Essentials of the Java Programming Language
public are package by default and can only be accessed by objects created from classes
in the same package. Here is the new DataOrder class:

package server;

import java.io.*;

//Make class public

public class DataOrder implements Serializable{

//Make fields public

public String apples, peaches, pears, cardnum, custID;

public double icost;

public int itotal;

}

Change Client Code to Find the Properties Files

In the example, the properties files (Messages_*) are stored in the directories with the client
source files. This makes it easier to package and deploy the files later. So the programs can
find the properties files, you have to make one small change to the client source code.

The code that creates the messages variable needs to include the directory (package) name
client2 as follows:

messages = ResourceBundle.getBundle(“client2” + File.separatorChar +

“MessagesBundle”, currentLocale);

Compile and Run the Example

Compiling and running the example organized into packages is a little different from
compiling and running the example in previous lessons. First, you have to execute the
compiler and interpreter commands from one directory above the package directories, and
second, you have to specify the package directories to the compiler and interpreter
commands. You will find this code in RMIClient1 .

Compile

UNIX

cd /home/zelda/classes

javac server/Send.java

javac server/RemoteServer.java

javac client2/RMIClient2.java

javac client1/RMIFrenchApp.java

javac client1/RMIGermanApp.java
Packages and JAR File Format

199

 Essentials of the Java Programming Language
javac client1/RMIEnglishApp.java

rmic -d . server.RemoteServer

cp server/RemoteServer*.class /home/zelda/public_html/classes/server

cp server/Send.class /home/zelda/public_html/classes/server

cp server/DataOrder.class /home/zelda/public_html/classes/server

Win32

cd \home\zelda\classes

javac server\Send.java

javac server\RemoteServer.java

javac client2\RMIClient2.java

javac client1\RMIFrenchApp.java

javac client1\RMIGermanApp.java

javac client1\RMIEnglishApp.java

rmic -d . server.RemoteServer

copy server\RemoteServer*.class \home\zelda\public_html\classes\server

copy server\Send.class \home\zelda\public_html\classes\server

copy server\DataOrder.class \home\zelda\public_html\classes\server

Note: The rmic -d . server.RemoteServer line uses
server.RemoteServer instead of server/RemoteServer to
correctly generate the _stub and _skel classes with the package.

Start the RMI Registry

UNIX

unsetenv CLASSPATH

rmiregistry &

Win32

set CLASSPATH=

start rmiregistry

Start the Server

UNIX

java -Djava.rmi.server.codebase= http://kq6py/~zelda/classes

-Djava.rmi.server.hostname=kq6py.eng.sun.com
Packages and JAR File Format

200

 Essentials of the Java Programming Language
-Djava.security.policy= server/java.policy server/RemoteServer

Win32

java -Djava.rmi.server.codebase=file:c:\home\zelda\public_html\classes
-Djava.rmi.server.hostname=kq6py.eng.sun.com

-Djava.security.policy= server\java.policy server\RemoteServer

Start the RMIGermanApp Program

Here is the HTML code to load the German applet, Note the directory/package name prefixed
to the applet class name (client1/RMIFrenchApp.class).

<HTML>

<BODY>

<APPLET CODE=client1/RMIGermanApp.class WIDTH=300 HEIGHT=300>

</APPLET>

</BODY>

</HTML>

To run the applet with appletviewer, invoke the HTML file from the directory just above
client1 as follows:

appletviewer rmiGapp.html

Start the RMIClient2 Program in French

UNIX

java -Djava.rmi.server.codebase=http://kq6py/~zelda/classes

-Djava.rmi.server.hostname=kq6py.eng.sun.com

-Djava.security.policy=client2/java.policy client2/RMIClient2
kq6py.eng.sun.com fr FR

Win32

java -Djava.rmi.server.codebase= file:c:\home\zelda\public_html\classes
-Djava.rmi.server.hostname=kq6py.eng.sun.com -Djava.security.policy=
client2\java.policy client2\RMIClient2 kq6py.eng.sun.com fr FR

Using JAR Files to Deploy

After testing and debugging, the best way to deploy the two client and server files is to bundle
the executables and other related application files into three separate JAR files, where you
have one JAR file for each client program, and one JAR file for the server program.

JAR files use the ZIP file format to compress and pack files into and decompress and unpack
files from the JAR file. JAR files make it easy to deploy programs that consist of many files.
Packages and JAR File Format

201

 Essentials of the Java Programming Language
Browsers can easily download applets bundled into JAR files, and the download goes much
more quickly than if the applet and its related files were not bundled into a JAR file.

Server Set of Files

These are the server files:

• RemoteServer.class

• RemoteServer_skel.class

• RemoteServer_stub.class

• Send.class

• DataOrder.class

• java.policy

Compress and Pack Server Files

To compress and pack the server files into one JAR file, type the following command on one
line. This command is executed in the same directory with the files. If you execute the
command from a directory other than where the files are, you have to specify the full
pathname.

jar cf server.jar RemoteServer.class RemoteServer_skel.class
RemoteServer_stub.class Send.class DataOrder.class java.policy

jar is the jar command. If you type jar with no options, you get the following help screen.
You can see from the help screen that the cf options to the jar command mean create a
new JAR file named server.jar and put the list of files that follows into it. The new JAR file
is placed in the current directory.

kq6py% jar Usage: jar {ctxu}[vfm0M] [jar-file] [manifest-file] [-C dir] files
... Options:

-c create new archive

-t list table of contents for archive

-x extract named (or all) files from archive

-u update existing archive

-v generate verbose output on standard output

-f specify archive file name

-m include manifest information from specified manifest file

-0 store only; use no ZIP compression

-M Do not create a manifest file for the entries

-C change to the specified directory and include the following file

If any file is a directory then it is processed recursively. The manifest file
name and the archive file name needs to be specified in the same order the ‘m’
and ‘f’ flags are specified.

Example 1: to archive two class files into an archive called classes.jar:
jar cvf classes.jar Foo.class Bar.class
Packages and JAR File Format

202

 Essentials of the Java Programming Language
Example 2: use an existing manifest file ‘mymanifest’ and archive all the
files in the foo/ directory into ‘classes.jar’: jar cvfm classes.jar
mymanifest -C foo/ .

To deploy the server files, all you have to do is move the
<CODE>server.jar</CODE> file to a publicly accessible directory on the server
where they are to execute.

Decompress and Unpack Server Files

After moving the JAR file to its final location, the compressed and packed files can be
decompressed and unpacked so you can start the server. The following command means
extract (x) all files from the server.jar file (f).

 jar xf server.jar

Note: It is also possible to start the server without decompressing and
unpacking the JAR file first. You can find out how to do this by
referring to the chapter on JAR files in The Java Tutorial referenced
at the end of this lesson.

Fruit Order Set of Files (RMIClient1)

The fruit order set of files (below) consists of applet classes, web pages, translation files, and
the policy file. Because they live on the web, they need to be in a directory accessible to the
web server. The easiest way to deploy these files is to bundle them all into a JAR file and
copy them to their location.

• RMIEnglishApp.class

• RMIFrenchApp.class

• RMIGermanApp.class

• index.html (top-level web page where user chooses language)

• rmiEapp.html (second-level web page for English)

• rmiFapp.html (second-level web page for French)

• rmiGapp.html (second-level web page for German)

• MessagesBundle_de_DE.properties

• MessagesBundle_en_US.properties

• MessagesBundle_fr_FR.properties

• java.policy

Compress and Pack Files

jar cf applet.jar RMIEnglishApp.class RMIFrenchApp.class RMIGermanApp.class
index.html rmiEapp.html rmiFapp.html rmiGapp.html
Packages and JAR File Format

203

 Essentials of the Java Programming Language
MessagesBundle_de_DE.properties MessagesBundle_en_US.properties
MessagesBundle_fr_FR.properties java.policy

To deploy the fruit order client files, copy the applet.jar file to its final location.

Decompress and Unpack Files

An applet in a JAR file can be invoked from an HTML file without being unpacked. All you do
is specify the ARCHIVE option to the APPLET tag in your web page, which tells the
appletviewer tool the name of the JAR file containing the class file. Be sure to include the
package directory when you specify the applet class to the CODE option.

When using appletviwer, you can leave the translation files and policy file in the JAR file. The
applet invoked from the JAR file will find them in the JAR file.

<HTML>

<BODY>

<APPLET CODE=client1/R.class ARCHIVE=”applet.jar” WIDTH=300 HEIGHT=300>

</APPLET>

</BODY>

</HTML>

However, you do need to unpack the web pages so you can move them to their final location.
The following command does this. Everything goes on one line.

 jar xv applet.jar index.html rmiEapp.html rmiFapp.html rmiGapp.html

Note: To run the HTML files from a browser, you need to unpack the JAR
file, copy the java.policy file to your home directory and make
sure it has the right name (.java.policy for UNIX and
java.policy for Windows), and install Java Plug-In.

View Order Set of Files

The view order set of files (below) consists of the application class file and the policy file.

• RMIClient2.class

• java.policy

Compress and Pack Files

jar cf vieworder.jar RMIClient2.class java.policy

To deploy the view order client files, copy the vieworder.jar file to its final location.

Decompress and Unpack Files

jar xf vieworder.jar
Packages and JAR File Format

204

 Essentials of the Java Programming Language
Exercises

1 When you organize classes into a package, what is the package name the same as?

2 When do you have to make a class public?

3 How is compiling and running classes organized into packages different?

4 What are JAR files used for?

5 Can applet and server classes be executed from within a JAR file?
Packages and JAR File Format

205

A
A. Code Listings
This appendix lists application code for the completed RMI application.

• RMIClient1

• RMIClient2

• DataOrder

• Send

• RemoteServer

• RMIFrenchApp

• RMIGermanApp

• RMIEnglishApp

• RMIClientView Program

• RMIClientController Program
206

Essentials of the Java Programming Language
RMIClient1

//package statement

package client1;

import java.awt.Color;

import java.awt.GridLayout;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import java.net.*;

import java.rmi.*;

import java.rmi.server.*;

import java.util.*;

import java.text.*;

import server.*;

class RMIClient1 extends JFrame implements ActionListener {

 private JLabel col1, col2;

 private JLabel totalItems, totalCost;

 private JLabel cardNum, custID;

 private JLabel applechk, pearchk, peachchk;

 private JButton purchase, reset;

 private JPanel panel;

 private JTextField appleqnt, pearqnt, peachqnt;

 private JTextField creditCard, customer;

 private JTextArea items, cost;

 private static Send send;

//Internationalization variables

 private static Locale currentLocale;

 private static ResourceBundle messages;

 private static String language, country;

 private NumberFormat numFormat;

 private RMIClient1(){ //Begin Constructor

 setTitle(messages.getString(“title”));

//Create left and right column labels

 col1 = new JLabel(messages.getString(“1col”));

 col2 = new JLabel(messages.getString(“2col”));
Code Listings

207

Essentials of the Java Programming Language
//Create labels and text field components

 applechk = new JLabel(“ “ + messages.getString(“apples”));

 appleqnt = new JTextField();

 appleqnt.addActionListener(this);

 pearchk = new JLabel(“ “ + messages.getString(“pears”));

 pearqnt = new JTextField();

 pearqnt.addActionListener(this);

 peachchk = new JLabel(“ “ + messages.getString(“peaches”));

 peachqnt = new JTextField();

 peachqnt.addActionListener(this);

 cardNum = new JLabel(“ “ + messages.getString(“card”));

 creditCard = new JTextField();

 pearqnt.setNextFocusableComponent(creditCard);

 customer = new JTextField();

 custID = new JLabel(“ “ + messages.getString(“customer”));

//Create labels and text area components

 totalItems = new JLabel(“ “ + messages.getString(“items”));

 totalCost = new JLabel(“ “ + messages.getString(“cost”));

 items = new JTextArea();

 cost = new JTextArea();

//Create buttons and make action listeners

 purchase = new JButton(messages.getString(“purchase”));

 purchase.addActionListener(this);

 reset = new JButton(messages.getString(“reset”));

 reset.addActionListener(this);

//Create a panel for the components

 panel = new JPanel();

//Set panel layout to 2-column grid

//on a white background

 panel.setLayout(new GridLayout(0,2));

 panel.setBackground(Color.white);

//Add components to panel columns

//going left to right and top to bottom

 getContentPane().add(panel);

 panel.add(col1);

 panel.add(col2);
Code Listings

208

Essentials of the Java Programming Language
 panel.add(applechk);

 panel.add(appleqnt);

 panel.add(peachchk);

 panel.add(peachqnt);

 panel.add(pearchk);

 panel.add(pearqnt);

 panel.add(totalItems);

 panel.add(items);

 panel.add(totalCost);

 panel.add(cost);

 panel.add(cardNum);

 panel.add(creditCard);

 panel.add(custID);

 panel.add(customer);

 panel.add(reset);

 panel.add(purchase);

 } //End Constructor

 public void actionPerformed(ActionEvent event) {

 Object source = event.getSource();

 Integer applesNo, peachesNo, pearsNo, num;

 Double cost;

 String text, text2;

 DataOrder order = new DataOrder();

//If Purchase button pressed . . .

 if (source == purchase) {

//Get data from text fields

 order.cardnum = creditCard.getText();

 order.custID = customer.getText();

 order.apples = appleqnt.getText();

 order.peaches = peachqnt.getText();

 order.pears = pearqnt.getText();

//Calculate total items

 if (order.apples.length() > 0) {

//Catch invalid number error

 try {

 applesNo = Integer.valueOf(order.apples);

 order.itotal += applesNo.intValue();

 } catch (java.lang.NumberFormatException e) {

 appleqnt.setText(messages.getString(“invalid”));
Code Listings

209

Essentials of the Java Programming Language
 }

 } else {

 /* else no need to change the total */

 }

 if(order.peaches.length() > 0){

//Catch invalid number error

 try {

 peachesNo = Integer.valueOf(order.peaches);

 order.itotal += peachesNo.intValue();

 } catch(java.lang.NumberFormatException e) {

 peachqnt.setText(messages.getString(“invalid”));

 }

 } else {

 /* else no need to change the total */

 }

 if(order.pears.length() > 0){

//Catch invalid number error

 try {

 pearsNo = Integer.valueOf(order.pears);

 order.itotal += pearsNo.intValue();

 } catch (java.lang.NumberFormatException e) {

 pearqnt.setText(messages.getString(“invalid”));

 }

 } else {

 /* else no need to change the total */

 }

//Create number formatter

 numFormat = NumberFormat.getNumberInstance(currentLocale);

//Display running total

 text = numFormat.format(order.itotal);

 this.items.setText(text);

//Calculate and display running cost

 order.icost = (order.itotal * 1.25);

 text2 = numFormat.format(order.icost);

 this.cost.setText(text2);

 try {

 send.sendOrder(order);

 } catch (java.rmi.RemoteException e) {

 System.out.println(messages.getString(“send”));
Code Listings

210

Essentials of the Java Programming Language
 } catch (java.io.IOException e) {

 System.out.println(“Unable to write to file”);

 }

 }

//If Reset button pressed

//Clear all fields

 if (source == reset) {

 creditCard.setText(““);

 appleqnt.setText(““);

 peachqnt.setText(““);

 pearqnt.setText(““);

 creditCard.setText(““);

 customer.setText(““);

 order.icost = 0;

 cost = new Double(order.icost);

 text2 = cost.toString();

 this.cost.setText(text2);

 order.itotal = 0;

 num = new Integer(order.itotal);

 text = num.toString();

 this.items.setText(text);

 }

 }

 public static void main(String[] args) {

 if (args.length != 3) {

 language = new String(“en”);

 country = new String (“US”);

 System.out.println(“English”);

 } else {

 language = new String(args[1]);

 country = new String(args[2]);

 System.out.println(language + country);

 }

 currentLocale = new Locale(language, country);

 messages = ResourceBundle.getBundle(

 “client1” + File.separatorChar +

 “MessagesBundle”, currentLocale);

 WindowListener l = new WindowAdapter() {

 public void windowClosing(WindowEvent e) {

 System.exit(0);

 }
Code Listings

211

Essentials of the Java Programming Language
 };

 RMIClient1 frame = new RMIClient1();

 frame.addWindowListener(l);

 frame.pack();

 frame.setVisible(true);

 if(System.getSecurityManager() == null) {

 System.setSecurityManager(new RMISecurityManager());

 }

 try {

 String name = “//” + args[0] + “/Send”;

 send = ((Send) Naming.lookup(name));

 } catch (java.rmi.NotBoundException e) {

 System.out.println(messages.getString(“nolookup”));

 } catch (java.rmi.RemoteException e) {

 System.out.println(messages.getString(“nolookup”));

 } catch (java.net.MalformedURLException e) {

 System.out.println(messages.getString(“nollokup”));

 }

 }

}

RMIClient2

//package statement

package client2;

import java.awt.Color;

import java.awt.GridLayout;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import java.net.*;

import java.rmi.*;

import java.rmi.server.*;

import java.io.FileInputStream.*;

import java.io.RandomAccessFile.*;

import java.io.File;

import java.util.*;

import java.text.*;
Code Listings

212

Essentials of the Java Programming Language
import server.*;

class RMIClient2 extends JFrame implements ActionListener {

 private JLabel creditCard, custID, apples, peaches, pears, total, cost, clicked;

 private JButton view, reset;

 private JPanel panel;

 private JTextArea creditNo, customerNo, applesNo, peachesNo, pearsNo, itotal,
icost;

 private static Send send;

 private String customer;

 private Set s = new HashSet();

 private static RMIClient2 frame;

//Internationalization variables

 private static Locale currentLocale;

 private static ResourceBundle messages;

 private static String language, country;

 private NumberFormat numFormat;

 private RMIClient2(){ //Begin Constructor

 setTitle(messages.getString(“title”));

//Create labels

 creditCard = new JLabel(messages.getString(“card”));

 custID = new JLabel(messages.getString(“customer”));

 apples = new JLabel(messages.getString(“apples”));

 peaches = new JLabel(messages.getString(“peaches”));

 pears = new JLabel(messages.getString(“pears”));

 total = new JLabel(messages.getString(“items”));

 cost = new JLabel(messages.getString(“cost”));

//Create text areas

 creditNo = new JTextArea();

 customerNo = new JTextArea();

 applesNo = new JTextArea();

 peachesNo = new JTextArea();

 pearsNo = new JTextArea();

 itotal = new JTextArea();

 icost = new JTextArea();

//Create buttons

 view = new JButton(messages.getString(“view”));

 view.addActionListener(this);
Code Listings

213

Essentials of the Java Programming Language
 reset = new JButton(messages.getString(“reset”));

 reset.addActionListener(this);

//Create panel for 2-column layout

//Set white background color

 panel = new JPanel();

 panel.setLayout(new GridLayout(0,2));

 panel.setBackground(Color.white);

//Add components to panel columns

//going left to right and top to bottom

 getContentPane().add(panel);

 panel.add(creditCard);

 panel.add(creditNo);

 panel.add(custID);

 panel.add(customerNo);

 panel.add(apples);

 panel.add(applesNo);

 panel.add(peaches);

 panel.add(peachesNo);

 panel.add(pears);

 panel.add(pearsNo);

 panel.add(total);

 panel.add(itotal);

 panel.add(cost);

 panel.add(icost);

 panel.add(view);

 panel.add(reset);

 } //End Constructor

 //Create list of customer IDs

 public void addCustomer(String custID) {

 s.add(custID);

 System.out.println("Customer ID added");

 }

//Get customer IDs

 public void getData() {

 if (s.size()!=0) {

 Iterator it = s.iterator();

 while (it.hasNext()) {

 System.out.println(it.next());

 }
Code Listings

214

Essentials of the Java Programming Language
 System.out.println(s);

 JOptionPane.showMessageDialog(frame, s.toString(), "Customer List",
JOptionPane.PLAIN_MESSAGE);

 } else {

 System.out.println("No customer IDs available");

 }

 }

 public void actionPerformed(ActionEvent event) {

 Object source = event.getSource();

 String unit, i;

 double cost;

 Double price;

 int items;

 Integer itms;

 DataOrder order = new DataOrder();

//If View button pressed

//Get data from server and display it

 if (source == view) {

 try {

 order = send.getOrder();

 creditNo.setText(order.cardnum);

 customerNo.setText(order.custID);

//Add customerID to list

 addCustomer(order.custID);

 applesNo.setText(order.apples);

 peachesNo.setText(order.peaches);

 pearsNo.setText(order.pears);

//Create number formatter

 numFormat = NumberFormat.getNumberInstance(currentLocale);

 price = new Double(order.icost);

 unit = numFormat.format(price);

 icost.setText(unit);

 itms = new Integer(order.itotal);

 i = numFormat.format(order.itotal);

 itotal.setText(i);

 } catch (java.rmi.RemoteException e) {

 JOptionPane.showMessageDialog(frame, "Cannot get data from server",
"Error", JOptionPane.ERROR_MESSAGE);

 } catch (java.io.IOException e) {
Code Listings

215

Essentials of the Java Programming Language
 System.out.println(“Unable to write to file”);

 }

 //Display Customer IDs

 getData();

 }

//If Reset button pressed

//Clear all fields

 if (source == reset) {

 creditNo.setText(““);

 customerNo.setText(““);

 applesNo.setText(““);

 peachesNo.setText(““);

 pearsNo.setText(““);

 itotal.setText(““);

 icost.setText(““);

 }

 }

 public static void main(String[] args) {

 if (args.length != 3) {

 language = new String(“en”);

 country = new String (“US”);

 System.out.println(“English”);

 } else {

 language = new String(args[1]);

 country = new String(args[2]);

 System.out.println(language + country);

 }

 currentLocale = new Locale(language, country);

 messages = ResourceBundle.getBundle(

 “client2” + File.separatorChar +

 “MessagesBundle”, currentLocale);

 WindowListener l = new WindowAdapter() {

 public void windowClosing(WindowEvent e) {

 System.exit(0);

 }

 };

 frame = new RMIClient2();

 frame.addWindowListener(l);
Code Listings

216

Essentials of the Java Programming Language
 frame.pack();

 frame.setVisible(true);

 if (System.getSecurityManager() == null) {

 System.setSecurityManager(new RMISecurityManager());

 }

 try {

 String name = “//” + args[0] + “/Send”;

 send = ((Send) Naming.lookup(name));

 } catch (java.rmi.NotBoundException e) {

 System.out.println(messages.getString(“nolookup”));

 } catch (java.rmi.RemoteException e) {

 System.out.println(messages.getString(“nolookup”));

 } catch (java.net.MalformedURLException e) {

 System.out.println(messages.getString(“nolookup”));

 }

 }

}

DataOrder

//package statement

package server;

import java.io.*;

public class DataOrder implements Serializable {

 public String apples, peaches, pears, custID, cardnum;

 public double icost;

 public int itotal;

}

Send

//package statement

package server;

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface Send extends Remote {
Code Listings

217

Essentials of the Java Programming Language
 public void sendOrder(DataOrder order)

 throws RemoteException, java.io.IOException;

 public DataOrder getOrder()

 throws RemoteException, java.io.IOException;

}

RemoteServer

//package statement

package server;

import java.awt.event.*;

import java.io.*;

import java.net.*;

import java.rmi.*;

import java.rmi.server.*;

class RemoteServer extends UnicastRemoteObject implements Send {

 Integer num = null;

 int value = 0, get = 0;

 ObjectOutputStream oos = null;

 public RemoteServer() throws RemoteException {

 super();

 }

 public synchronized void sendOrder(DataOrder order) throws java.io.IOException{

 value += 1;

 String orders = String.valueOf(value);

 try {

 FileOutputStream fos = new FileOutputStream(orders);

 oos = new ObjectOutputStream(fos);

 oos.writeObject(order);

 } catch (java.io.FileNotFoundException e) {

 System.out.println("File not found");

 } finally {

 if (oos != null) {

 oos.close();

 }

 }

 }
Code Listings

218

Essentials of the Java Programming Language
 public synchronized DataOrder getOrder() throws java.io.IOException{

 DataOrder order = null;

 ObjectInputStream ois = null;

 if (value == 0) {

 System.out.println("No Orders To Process");

 }

 if (value > get) {

 get += 1;

 String orders = String.valueOf(get);

 try {

 FileInputStream fis = new FileInputStream(orders);

 ois = new ObjectInputStream(fis);

 order = (DataOrder)ois.readObject();

 } catch (java.io.FileNotFoundException e) {

 System.out.println("File not found");

 } catch (java.io.IOException e) {

 System.out.println("Unable to read file");

 } catch (java.lang.ClassNotFoundException e) {

 System.out.println("No data available");

 } finally {

 if (oos != null) {

 oos.close();

 }

 }

 } else {

 System.out.println("No Orders To Process");

 }

 return order;

 }

 public static void main(String[] args) {

 if (System.getSecurityManager() == null) {

 System.setSecurityManager(new RMISecurityManager());

 }

 String name = "//kq6py.eng.sun.com/Send";

 try {

 Send remoteServer = new RemoteServer();

 Naming.rebind(name, remoteServer);

 System.out.println("RemoteServer bound");

 } catch (java.rmi.RemoteException e) {
Code Listings

219

Essentials of the Java Programming Language
 System.out.println("Cannot create remote server object");

 } catch (java.net.MalformedURLException e) {

 System.out.println("Cannot look up server object");

 }

 }

}

RMIFrenchApp

import java.awt.Color;

import java.awt.GridLayout;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import java.net.*;

import java.rmi.*;

import java.rmi.server.*;

import java.util.*;

import java.text.*;

import java.applet.Applet;

//Make public

public class RMIFrenchApp extends Applet implements ActionListener {

 JLabel col1, col2;

 JLabel totalItems, totalCost;

 JLabel cardNum, custID;

 JLabel applechk, pearchk, peachchk;

 JButton purchase, reset;

 JTextField appleqnt, pearqnt, peachqnt;

 JTextField creditCard, customer;

 JTextArea items, cost;

 static Send send;

//Internationalization variables

 Locale currentLocale;

 ResourceBundle messages;

 static String language, country;

 NumberFormat numFormat;

 public void init(){

 language = new String(“fr”);
Code Listings

220

Essentials of the Java Programming Language
 country = new String (“FR”);

 if (System.getSecurityManager() == null) {

 System.setSecurityManager(new RMISecurityManager());

 }

 currentLocale = new Locale(language, country);

 messages = ResourceBundle.getBundle(“MessagesBundle”, currentLocale);

 Locale test = messages.getLocale();

 try {

//Path to host where remote Send object is running

 String name = “//kq6py.eng.sun.com/Send”;

 send = ((Send) Naming.lookup(name));

 } catch (java.rmi.NotBoundException e) {

 System.out.println(messages.getString(“nolookup”));

 } catch (java.rmi.RemoteException e) {

 System.out.println(messages.getString(“nolookup”));

 } catch (java.net.MalformedURLException e) {

 System.out.println(messages.getString(“nollokup”));

 }

//Create left and right column labels

 col1 = new JLabel(messages.getString(“1col”));

 col2 = new JLabel(messages.getString(“2col”));

//Create labels and text field components

 applechk = new JLabel(“ “ + messages.getString(“apples”));

 appleqnt = new JTextField();

 appleqnt.addActionListener(this);

 pearchk = new JLabel(“ “ + messages.getString(“pears”));

 pearqnt = new JTextField();

 pearqnt.addActionListener(this);

 peachchk = new JLabel(“ “ + messages.getString(“peaches”));

 peachqnt = new JTextField();

 peachqnt.addActionListener(this);

 cardNum = new JLabel(“ “ + messages.getString(“card”));

 creditCard = new JTextField();

 pearqnt.setNextFocusableComponent(creditCard);

 customer = new JTextField();

 custID = new JLabel(“ “ + messages.getString(“customer”));

//Create labels and text area components

 totalItems = new JLabel(“ “ + messages.getString(“items”));
Code Listings

221

Essentials of the Java Programming Language
 totalCost = new JLabel(“ “ + messages.getString(“cost”));

 items = new JTextArea();

 cost = new JTextArea();

//Create buttons and make action listeners

 purchase = new JButton(messages.getString(“purchase”));

 purchase.addActionListener(this);

 reset = new JButton(messages.getString(“reset”));

 reset.addActionListener(this);

//Set panel layout to 2-column grid

//on a white background

 setLayout(new GridLayout(0,2));

 setBackground(Color.white);

//Add components to panel columns

//going left to right and top to bottom

 add(col1);

 add(col2);

 add(applechk);

 add(appleqnt);

 add(peachchk);

 add(peachqnt);

 add(pearchk);

 add(pearqnt);

 add(totalItems);

 add(items);

 add(totalCost);

 add(cost);

 add(cardNum);

 add(creditCard);

 add(custID);

 add(customer);

 add(reset);

 add(purchase);

 } //End Constructor

 public void actionPerformed(ActionEvent event) {

 Object source = event.getSource();

 Integer applesNo, peachesNo, pearsNo, num;

 Double cost;

 String text, text2;
Code Listings

222

Essentials of the Java Programming Language
 DataOrder order = new DataOrder();

//If Purchase button pressed . . .

 if (source == purchase) {

//Get data from text fields

 order.cardnum = creditCard.getText();

 order.custID = customer.getText();

 order.apples = appleqnt.getText();

 order.peaches = peachqnt.getText();

 order.pears = pearqnt.getText();

//Calculate total items

 if (order.apples.length() > 0){

//Catch invalid number error

 try {

 applesNo = Integer.valueOf(order.apples);

 order.itotal += applesNo.intValue();

 } catch (java.lang.NumberFormatException e) {

 appleqnt.setText(messages.getString(“invalid”));

 }

 } else {

 /* else no need to change the total */

 }

 if (order.peaches.length() > 0) {

//Catch invalid number error

 try

 peachesNo = Integer.valueOf(order.peaches);

 order.itotal += peachesNo.intValue();

 } catch (java.lang.NumberFormatException e) {

 peachqnt.setText(messages.getString(“invalid”));

 }

 } else {

 /* else no need to change the total */

 }

 if (order.pears.length() > 0) {

//Catch invalid number error

 try{

 pearsNo = Integer.valueOf(order.pears);

 order.itotal += pearsNo.intValue();

 } catch(java.lang.NumberFormatException e) {
Code Listings

223

Essentials of the Java Programming Language
 pearqnt.setText(messages.getString(“invalid”));

 }

 } else {

 /* else no need to change the total */

 }

//Create number formatter

 numFormat = NumberFormat.getNumberInstance(currentLocale);

//Display running total

 text = numFormat.format(order.itotal);

 this.items.setText(text);

//Calculate and display running cost

 order.icost = (order.itotal * 1.25);

 text2 = numFormat.format(order.icost);

 this.cost.setText(text2);

 try {

 send.sendOrder(order);

 } catch (java.rmi.RemoteException e) {

 System.out.println(messages.getString(“send”));

 }catch (java.io.IOException e) {

 System.out.println("Unable to write to file");

 }

 }

//If Reset button pressed

//Clear all fields

 if (source == reset) {

 creditCard.setText(““);

 appleqnt.setText(““);

 peachqnt.setText(““);

 pearqnt.setText(““);

 creditCard.setText(““);

 customer.setText(““);

 order.icost = 0;

 cost = new Double(order.icost);

 text2 = cost.toString();

 this.cost.setText(text2);

 order.itotal = 0;

 num = new Integer(order.itotal);

 text = num.toString();

 this.items.setText(text);

 }
Code Listings

224

Essentials of the Java Programming Language
 }

}

RMIGermanApp

import java.awt.Color;

import java.awt.GridLayout;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import java.net.*;

import java.rmi.*;

import java.rmi.server.*;

import java.util.*;

import java.text.*;

import java.applet.Applet;

//Make public

public class RMIGermanApp extends Applet implements ActionListener {

 JLabel col1, col2;

 JLabel totalItems, totalCost;

 JLabel cardNum, custID;

 JLabel applechk, pearchk, peachchk;

 JButton purchase, reset;

 JTextField appleqnt, pearqnt, peachqnt;

 JTextField creditCard, customer;

 JTextArea items, cost;

 static Send send;

//Internationalization variables

 Locale currentLocale;

 ResourceBundle messages;

 static String language, country;

 NumberFormat numFormat;

 public void init(){

 language = new String(“de”);

 country = new String (“DE”);

 if (System.getSecurityManager() == null) {

 System.setSecurityManager(new RMISecurityManager());

 }

 currentLocale = new Locale(language, country);
Code Listings

225

Essentials of the Java Programming Language
 messages = ResourceBundle.getBundle(“MessagesBundle”, currentLocale);

 Locale test = messages.getLocale();

 try {

//Path to host where remote Send object is running

 String name = “//kq6py.eng.sun.com/Send”;

 send = ((Send) Naming.lookup(name));

 } catch (java.rmi.NotBoundException e) {

 System.out.println(messages.getString(“nolookup”));

 } catch java.rmi.RemoteException e) {

 System.out.println(messages.getString(“nolookup”));

 } catch (java.net.MalformedURLException e) {

 System.out.println(messages.getString(“nollokup”));

 }

//Create left and right column labels

 col1 = new JLabel(messages.getString(“1col”));

 col2 = new JLabel(messages.getString(“2col”));

//Create labels and text field components

 applechk = new JLabel(“ “ + messages.getString(“apples”));

 appleqnt = new JTextField();

 appleqnt.addActionListener(this);

 pearchk = new JLabel(“ “ + messages.getString(“pears”));

 pearqnt = new JTextField();

 pearqnt.addActionListener(this);

 peachchk = new JLabel(“ “ + messages.getString(“peaches”));

 peachqnt = new JTextField();

 peachqnt.addActionListener(this);

 cardNum = new JLabel(“ “ + messages.getString(“card”));

 creditCard = new JTextField();

 pearqnt.setNextFocusableComponent(creditCard);

 customer = new JTextField();

 custID = new JLabel(“ “ + messages.getString(“customer”));

//Create labels and text area components

 totalItems = new JLabel(“ “ + messages.getString(“items”));

 totalCost = new JLabel(“ “ + messages.getString(“cost”));

 items = new JTextArea();

 cost = new JTextArea();

//Create buttons and make action listeners
Code Listings

226

Essentials of the Java Programming Language
 purchase = new JButton(messages.getString(“purchase”));

 purchase.addActionListener(this);

 reset = new JButton(messages.getString(“reset”));

 reset.addActionListener(this);

//Set panel layout to 2-column grid

//on a white background

 setLayout(new GridLayout(0,2));

 setBackground(Color.white);

//Add components to panel columns

//going left to right and top to bottom

 add(col1);

 add(col2);

 add(applechk);

 add(appleqnt);

 add(peachchk);

 add(peachqnt);

 add(pearchk);

 add(pearqnt);

 add(totalItems);

 add(items);

 add(totalCost);

 add(cost);

 add(cardNum);

 add(creditCard);

 add(custID);

 add(customer);

 add(reset);

 add(purchase);

 } //End Constructor

 public void actionPerformed(ActionEvent event) {

 Object source = event.getSource();

 Integer applesNo, peachesNo, pearsNo, num;

 Double cost;

 String text, text2;

 DataOrder order = new DataOrder();

//If Purchase button pressed . . .

 if (source == purchase) {

//Get data from text fields
Code Listings

227

Essentials of the Java Programming Language
 order.cardnum = creditCard.getText();

 order.custID = customer.getText();

 order.apples = appleqnt.getText();

 order.peaches = peachqnt.getText();

 order.pears = pearqnt.getText();

//Calculate total items

 if (order.apples.length() > 0) {

//Catch invalid number error

 try {

 applesNo = Integer.valueOf(order.apples);

 order.itotal += applesNo.intValue();

 } catch (java.lang.NumberFormatException e) {

 appleqnt.setText(messages.getString(“invalid”));

 }

 } else {

 /* else no need to change the total */

 }

 if (order.peaches.length() > 0) {

//Catch invalid number error

 try {

 peachesNo = Integer.valueOf(order.peaches);

 order.itotal += peachesNo.intValue();

 } catch (java.lang.NumberFormatException e){

 peachqnt.setText(messages.getString(“invalid”));

 }

 } else {

 /* else no need to change the total */

 }

 if (order.pears.length() > 0) {

//Catch invalid number error

 try {

 pearsNo = Integer.valueOf(order.pears);

 order.itotal += pearsNo.intValue();

 } catch (java.lang.NumberFormatException e) {

 pearqnt.setText(messages.getString(“invalid”));

 }

 } else {

 /* else no need to change the total */

 }
Code Listings

228

Essentials of the Java Programming Language
//Create number formatter

 numFormat = NumberFormat.getNumberInstance(currentLocale);

//Display running total

 text = numFormat.format(order.itotal);

 this.items.setText(text);

//Calculate and display running cost

 order.icost = (order.itotal * 1.25);

 text2 = numFormat.format(order.icost);

 this.cost.setText(text2);

 try{

 send.sendOrder(order);

 } catch (java.rmi.RemoteException e) {

 System.out.println(messages.getString(“send”));

 }catch (java.io.IOException e) {

 System.out.println("Unable to write to file");

 }

 }

//If Reset button pressed

//Clear all fields

 if source == reset) {

 creditCard.setText(““);

 appleqnt.setText(““);

 peachqnt.setText(““);

 pearqnt.setText(““);

 creditCard.setText(““);

 customer.setText(““);

 order.icost = 0;

 cost = new Double(order.icost);

 text2 = cost.toString();

 this.cost.setText(text2);

 order.itotal = 0;

 num = new Integer(order.itotal);

 text = num.toString();

 this.items.setText(text);

 }

 }

}

Code Listings

229

Essentials of the Java Programming Language
RMIEnglishApp

import java.awt.Color;

import java.awt.GridLayout;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

import java.net.*;

import java.rmi.*;

import java.rmi.server.*;

import java.util.*;

import java.text.*;

import java.applet.Applet;

//Make public

public class RMIEnglishApp extends Applet implements ActionListener {

 JLabel col1, col2;

 JLabel totalItems, totalCost;

 JLabel cardNum, custID;

 JLabel applechk, pearchk, peachchk;

 JButton purchase, reset;

 JTextField appleqnt, pearqnt, peachqnt;

 JTextField creditCard, customer;

 JTextArea items, cost;

 static Send send;

//Internationalization variables

 Locale currentLocale;

 ResourceBundle messages;

 static String language, country;

 NumberFormat numFormat;

 public void init() {

 language = new String(“en”);

 country = new String (“US”);

 if (System.getSecurityManager() == null) {

 System.setSecurityManager(new RMISecurityManager());

 }

 currentLocale = new Locale(language, country);

 messages = ResourceBundle.getBundle(“MessagesBundle”, currentLocale);

 Locale test = messages.getLocale();
Code Listings

230

Essentials of the Java Programming Language
 try {

//Path to host where remote Send object is running

 String name = “//kq6py.eng.sun.com/Send”;

 send = ((Send) Naming.lookup(name));

 } catch (java.rmi.NotBoundException e) {

 System.out.println(messages.getString(“nolookup”));

 } catch (java.rmi.RemoteException e) {

 System.out.println(messages.getString(“nolookup”));

 } catch(java.net.MalformedURLException e) {

 System.out.println(messages.getString(“nollokup”));

 }

//Create left and right column labels

 col1 = new JLabel(messages.getString(“1col”));

 col2 = new JLabel(messages.getString(“2col”));

//Create labels and text field components

 applechk = new JLabel(“ “ + messages.getString(“apples”));

 appleqnt = new JTextField();

 appleqnt.addActionListener(this);

 pearchk = new JLabel(“ “ + messages.getString(“pears”));

 pearqnt = new JTextField();

 pearqnt.addActionListener(this);

 peachchk = new JLabel(“ “ + messages.getString(“peaches”));

 peachqnt = new JTextField();

 peachqnt.addActionListener(this);

 cardNum = new JLabel(“ “ + messages.getString(“card”));

 creditCard = new JTextField();

 pearqnt.setNextFocusableComponent(creditCard);

 customer = new JTextField();

 custID = new JLabel(“ “ + messages.getString(“customer”));

//Create labels and text area components

 totalItems = new JLabel(“ “ + messages.getString(“items”));

 totalCost = new JLabel(“ “ + messages.getString(“cost”));

 items = new JTextArea();

 cost = new JTextArea();

//Create buttons and make action listeners

 purchase = new JButton(messages.getString(“purchase”));

 purchase.addActionListener(this);
Code Listings

231

Essentials of the Java Programming Language
 reset = new JButton(messages.getString(“reset”));

 reset.addActionListener(this);

//Set panel layout to 2-column grid

//on a white background

 setLayout(new GridLayout(0,2));

 setBackground(Color.white);

//Add components to panel columns

//going left to right and top to bottom

 add(col1);

 add(col2);

 add(applechk);

 add(appleqnt);

 add(peachchk);

 add(peachqnt);

 add(pearchk);

 add(pearqnt);

 add(totalItems);

 add(items);

 add(totalCost);

 add(cost);

 add(cardNum);

 add(creditCard);

 add(custID);

 add(customer);

 add(reset);

 add(purchase);

 } //End Constructor

 public void actionPerformed(ActionEvent event) {

 Object source = event.getSource();

 Integer applesNo, peachesNo, pearsNo, num;

 Double cost;

 String text, text2;

 DataOrder order = new DataOrder();

//If Purchase button pressed . . .

 if(source == purchase){

//Get data from text fields

 order.cardnum = creditCard.getText();

 order.custID = customer.getText();

 order.apples = appleqnt.getText();
Code Listings

232

Essentials of the Java Programming Language
 order.peaches = peachqnt.getText();

 order.pears = pearqnt.getText();

//Calculate total items

 if(order.apples.length() > 0){

//Catch invalid number error

 try {

 applesNo = Integer.valueOf(order.apples);

 order.itotal += applesNo.intValue();

 } catch (java.lang.NumberFormatException e) {

 appleqnt.setText(messages.getString(“invalid”));

 }

 } else {

 /* else no need to change the total */

 }

 if(order.peaches.length() > 0){

//Catch invalid number error

 try{

 peachesNo = Integer.valueOf(order.peaches);

 order.itotal += peachesNo.intValue();

 } catch(java.lang.NumberFormatException e) {

 peachqnt.setText(messages.getString(“invalid”));

 }

 } else {

 /* else no need to change the total */

 }

 if (order.pears.length() > 0) {

//Catch invalid number error

 try {

 pearsNo = Integer.valueOf(order.pears);

 order.itotal += pearsNo.intValue();

 } catch(java.lang.NumberFormatException e) {

 pearqnt.setText(messages.getString(“invalid”));

 }

 } else {

 /* else no need to change the total */

 }

//Create number formatter

 numFormat = NumberFormat.getNumberInstance(currentLocale);

//Display running total

 text = numFormat.format(order.itotal);

 this.items.setText(text);

//Calculate and display running cost
Code Listings

233

Essentials of the Java Programming Language
 order.icost = (order.itotal * 1.25);

 text2 = numFormat.format(order.icost);

 this.cost.setText(text2);

 try {

 send.sendOrder(order);

 } catch (java.rmi.RemoteException e) {

 System.out.println(messages.getString(“send”));

 }catch (java.io.IOException e) {

 System.out.println("Unable to write to file");

 }

 }

//If Reset button pressed

//Clear all fields

 if (source == reset) {

 creditCard.setText(““);

 appleqnt.setText(““);

 peachqnt.setText(““);

 pearqnt.setText(““);

 creditCard.setText(““);

 customer.setText(““);

 order.icost = 0;

 cost = new Double(order.icost);

 text2 = cost.toString();

 this.cost.setText(text2);

 order.itotal = 0;

 num = new Integer(order.itotal);

 text = num.toString();

 this.items.setText(text);

 }

 }

}

RMIClientView Program

package client1;

import java.awt.Color;

import java.awt.GridLayout;

import java.awt.event.WindowListener;

import java.awt.event.WindowAdapter;
Code Listings

234

Essentials of the Java Programming Language
import java.awt.event.WindowEvent;

import javax.swing.*;

import java.io.File;

import java.rmi.Naming;

import java.rmi.RMISecurityManager;

import java.util.ResourceBundle;

import java.util.Locale;

import java.text.NumberFormat;

import server.Send;

class RMIClientView extends JFrame {

 protected JLabel col1, col2;

 protected JLabel totalItems, totalCost;

 protected JLabel cardNum, custID;

 protected JLabel applechk, pearchk, peachchk;

 protected JButton purchase, reset;

 protected JPanel panel;

 protected JTextField appleqnt, pearqnt, peachqnt;

 protected JTextField creditCard, customer;

 protected JTextArea items, cost;

 protected static Send send;

//Internationalization variables

 private static Locale currentLocale;

 private static ResourceBundle messages;

 private static String language, country;

 private NumberFormat numFormat;

 private RMIClientView(){ //Begin Constructor

 setTitle(messages.getString("title"));

//Create left and right column labels

 col1 = new JLabel(messages.getString("1col"));

 col2 = new JLabel(messages.getString("2col"));

//Create labels and text field components

 applechk = new JLabel(" " + messages.getString("apples"));

 appleqnt = new JTextField();

 pearchk = new JLabel(" " + messages.getString("pears"));

 pearqnt = new JTextField();

 peachchk = new JLabel(" " + messages.getString("peaches"));

 peachqnt = new JTextField();
Code Listings

235

Essentials of the Java Programming Language
 cardNum = new JLabel(" " + messages.getString("card"));

 creditCard = new JTextField();

 pearqnt.setNextFocusableComponent(creditCard);

 customer = new JTextField();

 custID = new JLabel(" " + messages.getString("customer"));

//Create labels and text area components

 totalItems = new JLabel(" " + messages.getString("items"));

 totalCost = new JLabel(" " + messages.getString("cost"));

 items = new JTextArea();

 cost = new JTextArea();

//Create buttons and make action listeners

 purchase = new JButton(messages.getString("purchase"));

 reset = new JButton(messages.getString("reset"));

//Create a panel for the components

 panel = new JPanel();

//Set panel layout to 2-column grid

//on a white background

 panel.setLayout(new GridLayout(0,2));

 panel.setBackground(Color.white);

//Add components to panel columns

//going left to right and top to bottom

 getContentPane().add(panel);

 panel.add(col1);

 panel.add(col2);

 panel.add(applechk);

 panel.add(appleqnt);

 panel.add(peachchk);

 panel.add(peachqnt);

 panel.add(pearchk);

 panel.add(pearqnt);

 panel.add(totalItems);

 panel.add(items);

 panel.add(totalCost);

 panel.add(cost);

 panel.add(cardNum);

 panel.add(creditCard);

 panel.add(custID);
Code Listings

236

Essentials of the Java Programming Language
 panel.add(customer);

 panel.add(reset);

 panel.add(purchase);

 } //End Constructor

 public static void main(String[] args) {

 if (args.length != 3) {

 language = new String("en");

 country = new String ("US");

 System.out.println("English");

 } else {

 language = new String(args[1]);

 country = new String(args[2]);

 System.out.println(language + country);

 }

 currentLocale = new Locale(language, country);

 messages = ResourceBundle.getBundle("client1" +

File.separatorChar + "MessagesBundle",

currentLocale);

 WindowListener l = new WindowAdapter() {

 public void windowClosing(WindowEvent e) {

 System.exit(0);

 }

 };

 RMIClientView frame = new RMIClientView();

 frame.addWindowListener(l);

 frame.pack();

 frame.setVisible(true);

 RMIClientController control = new RMIClientController(frame, messages,
currentLocale);

 if(System.getSecurityManager() == null) {

 System.setSecurityManager(new RMISecurityManager());

 }

 try {

 String name = "//" + args[0] + "/Send";

 send = ((Send) Naming.lookup(name));

 } catch (java.rmi.NotBoundException e) {

 System.out.println(messages.getString("nolookup"));

 } catch (java.rmi.RemoteException e) {

 System.out.println(messages.getString("nolookup"));
Code Listings

237

Essentials of the Java Programming Language
 } catch (java.net.MalformedURLException e) {

 System.out.println(messages.getString("nollokup"));

 }

 }

}

RMIClientController Program

package client1;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

import java.util.ResourceBundle;

import java.util.Locale;

import java.text.NumberFormat;

import server.DataOrder;

class RMIClientController implements ActionListener {

 private RMIClientView frame;

 private ResourceBundle messages;

 private NumberFormat numFormat;

 private Locale currentLocale;

 protected RMIClientController(RMIClientView frame,

ResourceBundle messages,

Locale currentLocale){

 this.frame = frame;

 this.messages = messages;

 this.currentLocale = currentLocale;

//Make action listeners

 frame.purchase.addActionListener(this);

 frame.reset.addActionListener(this);

 frame.appleqnt.addActionListener(this);

 frame.peachqnt.addActionListener(this);

 frame.pearqnt.addActionListener(this);

 } //End Constructor

 public void actionPerformed(ActionEvent event) {

 Object source = event.getSource();

 Integer applesNo, peachesNo, pearsNo, num;

 Double cost;
Code Listings

238

Essentials of the Java Programming Language
 String text, text2;

 DataOrder order = new DataOrder();

//If Purchase button pressed . . .

 if (source == frame.purchase) {

//Get data from text fields

 order.cardnum = frame.creditCard.getText();

 order.custID = frame.customer.getText();

 order.apples = frame.appleqnt.getText();

 order.peaches = frame.peachqnt.getText();

 order.pears = frame.pearqnt.getText();

//Calculate total items

 if (order.apples.length() > 0) {

//Catch invalid number error

 try {

 applesNo = Integer.valueOf(order.apples);

 order.itotal += applesNo.intValue();

 } catch (java.lang.NumberFormatException e) {

 frame.appleqnt.setText(messages.getString("invalid"));

 }

 } else {

 /* else no need to change the total */

 }

 if(order.peaches.length() > 0){

//Catch invalid number error

 try {

 peachesNo = Integer.valueOf(order.peaches);

 order.itotal += peachesNo.intValue();

 } catch(java.lang.NumberFormatException e) {

 frame.peachqnt.setText(messages.getString("invalid"));

 }

 } else {

 /* else no need to change the total */

 }

 if(order.pears.length() > 0){

//Catch invalid number error

 try {

 pearsNo = Integer.valueOf(order.pears);

 order.itotal += pearsNo.intValue();

 } catch (java.lang.NumberFormatException e) {
Code Listings

239

Essentials of the Java Programming Language
 frame.pearqnt.setText(messages.getString("invalid"));

 }

 } else {

 /* else no need to change the total */

 }

//Create number formatter

 numFormat = NumberFormat.getNumberInstance(currentLocale);

//Display running total

 text = numFormat.format(order.itotal);

 frame.items.setText(text);

//Calculate and display running cost

 order.icost = (order.itotal * 1.25);

 text2 = numFormat.format(order.icost);

 frame.cost.setText(text2);

 try {

 frame.send.sendOrder(order);

 } catch (java.rmi.RemoteException e) {

 System.out.println(messages.getString("send"));

 } catch (java.io.IOException e) {

 System.out.println("Unable to write to file");

 }

 }

//If Reset button pressed

//Clear all fields

 if (source == frame.reset) {

 frame.creditCard.setText("");

 frame.appleqnt.setText("");

 frame.peachqnt.setText("");

 frame.pearqnt.setText("");

 frame.creditCard.setText("");

 frame.customer.setText("");

 order.icost = 0;

 cost = new Double(order.icost);

 text2 = cost.toString();

 frame.cost.setText(text2);

 order.itotal = 0;

 num = new Integer(order.itotal);

 text = num.toString();

 frame.items.setText(text);

 }
Code Listings

240

Essentials of the Java Programming Language
 }

}

Code Listings

241

Index
A
abstract class, definition of 42

Abstract Window Toolkit (AWT)
described 32
permissions 89

accept method (Socket) 110

access levels
classes 126
setting 128

accessing data in a set 164

ActionEvent
class 35
getSource method 35

ActionListener
adding 33
interface 32, 135

actionPerformed method
event handling 35, 137
file I/O 49
internationalization 182
sockets 108, 109
user interactions 35

add method
Panel class 31
Set class 164

addActionListener method (Component) 33

addWindowListener method (Frame) 32

anonymous inner class 36

APIs
Java APIs 11

append
TextArea.append 72
to a file (RandomAccessFile) 58

Applet
class 24
destroy method 23
paint method 23
start method 23
stop method 23

APPLET tag 204

applets
access to resources 56
converting from application 23
database access 73
24
defining appearance of 27
defining behavior of 25
destroy method 26
example of 23
HTML file to invoke 24
init method 26
internationalize 185
policy file 56
running with appletviewer 24
start method 26
stop method 26

appletviewer
public applet 24
running an applet 24

application programming interfaces, see APIs

applications
file access 48
policy file 57
restricting 57

AWT, see Abstract Window Toolkit

B
BorderLayout class 34

BufferedReader
class 107
in method 108

buttons
behavior 138
Project Swing 135

byte array 50

C
C comments 13

C++ comments 13

calculating totals 143

checked exceptions 53

child class 24

class
access levels 126
anonymous 36
child of 24
constructor 20
declaration 32
2

Product Name & Model
definition of 16
extending 24
inner 36
instance 16
methods 18
object-oriented programming 122
package 126
packages 27, 126, 197
parent of 24
private 126
protected 126
public 126
security access 198

Class.forName(_driver) method 70

close method
FileInputStream class 50
FileOutputStream class 49

collection
access data in set 164
class hierarchy 163
creating a set 163
definition of 162
iterator 164
traverse 164

comments in code 12

compiler
using 12

Component
addActionListener method 33
getting data from 138
setLayout method 31
setNextFocusableComponent method 139

compressing files 202

connecting to a database 70

Connection
createStatement method 71

Connection class 70

constant data 127

constant value 71

constructor
creating a user interface in 135
definition of 20

content pane 34, 136

cooperating classes 123, 127

country codes 176

createStatement method (Connection) 71

culturally dependent data 174

cursor focus 139

D
database

connection 70

drivers 69
example of access to 69
JDBC driver 73
JDBC-ODBC bridge 75
setup 69
table 69

DataOrder class 137

decompressing files 203

destroy method (applets) 23

dialog boxes 165

doc comments 13

doPost method
HttpServlet class 42

Double class 140

double data type 140

double slashes 13

drawRect method (Graphics) 27

drawString method (Graphics) 27

DriverManager
class 70
getConnection(_url) method 70

E
error handling 53

finally clause 161
internationalization 174
throws clause 175

event handling
actionPerformed method 35, 137
adding event listeners 35
event listeners 35

examples
ApptoAppl 37
Dba 77
DbaAppl 79
DbaOdbAppl 82
DbaServlet 84
ExampleProgram 12
ExampServlet 42
FileIO 58
FileIOAppl 61
JavaServer Pages 44
LessonTwoA. 17
LessonTwoB 17
LessonTwoC 18
LessonTwoD 20
RemoteServer 102

serialization 167
RMIClient1 98

access levels 207, 212
improved 152
user interface 144

RMIClient2 100
243

Product Name & Model
collections 169
user interface 149

Send 103
SimpleApplet 23
SimpleApplet, no import statements 28
SocketClient 113
SocketServer 115
SocketThrdServer 117

exception handling
definition of 52
deployment phase 53
test and debug phase 53

executeQuery method (Statement) 71

executeUpdate method (Statement) 71

exit method (System) 71

extending a class 24

F
fields

package 126
private 126
protected 126
public 126

File
separatorChar method 52

file
compression 202
decompression 203

FileInputStream
class 49, 160
close method 50

FileOutputStream
class 49, 159
close method 49
write method 49

final keyword 71, 127

finalize method 112

finally block 54, 159, 161

form, HTML 40

forName method (Class) 70

Frame
addWindowListener method 32
class 30
pack method 32
setTitle method 32
setVisible method 32

G
getBundle method (ResourceBundle) 180

getConnection method (DriverManager) 70

getContentPane method (JFrame) 31

getProperty method (System) 50

getSecurityManager method (System) 95

getSource method (ActionEvent) 35

getString method (ResourceBundle) 180

global
constant 127
variable 127

graphical user interface
button components 135
components of 134
cursor focus 139
dialog boxes 165
example of 131
simple example 30
Tab key behavior 131

Graphics
drawRect method 27
drawString method 27
setColor method 27

GridLayout class 135, 136

H
HashSet class 163

hasNext method (Iterator) 164

HTML
form 40
JAR files 204

HttpServlet
class 41, 42
doPost method 42

HttpServletRequest class 42

HttpServletResponse
class 42
setContentType method 42

HyperText Markup Language (HTML) 40

HyperText Transfer Protocol (HTTP) 40
Remote Method Invocation 92

I
illegal number format 143

import 63

in method (BufferedReader) 108

inheritance
definition of 124
single 24
your classes 128

InputStreamReader class 107

instance
definition of 16
methods 18

int data type 140
244

Product Name & Model
interface
actionListener 35
collections 162
definition of 33

internationalize
actionPerformed method 182
applets 185
country codes 176
creating objects 181
error message text 174
identify data 174
key and value pairs 175
language codes 176
MessageBundle files 180
properties files 176
translated text 175

interpreter
JVM 11

IOException class 53

Iterator
class 164
hasNext method 164

J
jar command 202

Java APIs 11
Applet class 24
BorderLayout class 34
FileInputStream class 49
FileOutputStream class 49
Frame class 30
HttpServlet class 41
IOException class 53
JButton class 33
JFrame class 32
JLabel class 33
JPane class 33
JTextfield class 48
packages 27
Panel class 24
Project Swing 30
ResultSet class 72
System class 17

Java Archive (JAR) files
definition of 201
HTML file invocation of 204
jar command 202
web page deployment 203

Java platform
architecture of 11
consists of 11
installation of 11

Java virtual machine
calling main method 16

definition of 11

java.lang.Object 124

JavaServer Pages 44

JButton class 33, 135

JDBC driver 73

JDBC technology, see database

JDBC-ODBC bridge 75

JFrame
class 32
content pane 34
getContentPane method 31

JLabel
class 33, 135

JPanel class 33, 135

JTextArea
append method 72
class 135
getText method 138

JTextField
class 48, 135
getText method 138
setText method 50

K
keywords

final 71
private 71
public 16
static 16
void 16

L
language codes 176

layout manager
BorderLayout class 34
GridLayout class 134

List interface 163

listenSocket method 107, 108

Locale class 180

lookup method (Name) 96

M
main method 16

MessagesBundle 180

methods
class 18
instance 18
main 16
package 126
private 126
245

Product Name & Model
protected 126
public 126

multithreaded server
closing connections 112
definition of 105
finalize method 112
program 110
synchronized methods 112
thread safe 112

N
Naming

lookup method 96
rebind method 95

next method (ResultSet) 72

NumberFormat class 182

numbers
calculating 143
converting to strings 140
illegal number format 143
internationalization 182

O
Object class 124

ObjectInputStream
class 160
readObject method 160

object-oriented programming
access levels 128
applied 127
classes 122
cooperating classes 123, 127
inheritance 124, 128
language features 122
objects 123
polymorphism 125
well-defined boundaries 123

ObjectOutputStream
class 159
writeObject method 159

objects
internationalizing 181
object-oriented programming 123

P
pack method (Frame) 32

package
class 126

packages
classes 126
declaring 198
directories 197

fields 126
locating Java API classes 27
methods 126
organizing programs into 197
property file location 199

paint method (applets) 23

Panel
add method 31
class 24
setBackground method 31

panel 31

parent class 24

Plug-In, Java 24

policy file
applet 56
applications 57

Policy tool 74

polymorphism 125

printing a set collection 164

PrintWriter class 42, 111

private
classes 126
fields 126
methods 126

Project Swing 30
content pane 34
cursor focus 139
example of 131
simple example 30
Tab key behavior 131
user interface components 134

properties
property files and packages 199
system 52

properties files 176

protected
class 126
fields 126
methods 126

public
classes 126
fields 126
main method 16
methods 126
runnig servlets 42
running applets 24

R
reading

database input 72
file input 48
objects 160
stack trace 73
246

Product Name & Model
readObject method (ObjectInputStream) 160

rebind method (Naming) 95

Remote Method Invocation (RMI)
client program 96, 97
definition of 86
example of 87
getting data from server 97
looking up the server 97
registering the server 95
RMI registry 91
security manager 96
sending data to server 96

resource starvation 112

ResourceBundle
class 180
getBundle method 180
getString method 180

ResultSet
class 71, 72
next method 72

RMI registry 91

RMI, see Remote Method Invocation

RSA, see Rivest, Shamir, and Adleman

run method 111

S
security

Abstract Window Toolkit permissions 89
access level controls 126
access to classes 198
database access 73
network access 89
permission to access files 56
policy file 56
restricting applications 57

security manager (RMI) 94, 96

serialization
definition of 138
reading an input stream 160
writing to an output stream 159

server
example of 141
lookup 97
making data available 132
multithreaded 105
remote 94

servlet
access to resources 58
database access 76
definition of 39
example of 40
get 43
HTML form 40

post 43

Set
add method 164
interface 163

set data, accessing 164

set, collections 163

setBackground method 23, 26

setColor method (Graphics) 27

setContentType method (HttpServletResponse) 42

setLayout method (Component) 31

setNextFocusableComponent method (Component) 139

setText Method (JTextField) 50

setTitle method (Frame) 32

setVisible method (Frame) 32

single inheritance 24

Socket
accept method 110
class 109

sockets
actionPerformed method 108, 109
client program 108
closing 112
definition of 105
example of 105
finalize method 112
listenSocket method 107, 108
multithreaded server 110
server example 106
server program 107

stack trace, reading 73

start method (applets) 23

Statement
class 71
executeQuery method 71
executeUpdate method 71

static
field 17
instance 138
main method 16
methods 17

stop method (applets) 23

String
concat method 122
convert to number 140
objects 123

subclasses 124

superclasses 124

Swing, see Project Swing

synchronized keyword 112, 159

synchronized methods 161

System
class 17
247

Product Name & Model
exit method 71
getProperty method 50
getSecurityManager method 95
out.println method 12

system properties 52

T
The 135

this reference 35

Thread class 110

threads
finalize method 112
multithreaded server 111
run method 111
synchronized methods 112
thread safe 112

throws clause 175

traverse 164

traverse collection 164

TreeSet class 163

try and catch block 53

try and catch blocks 53

two-column layout 134

U
UnicastRemoteObject class 94

Uniform Resource Locator (URL)
Remote Method Invocation 90

user interface
components of 134
cursor focus 139
example of 131
simple example 30
Tab key behavior 131

V
variable data 127

virtual machine 11

void, main method return type 16

W
web pages and JAR files 203

WindowAdapter class 36

windowClosing method 36

WindowListener class 32

WindowListener interface 36

write method (FileOutputStream) 49

writeObject method (ObjectOutputStream) 159

writing
appending 58
database output 71
file output 48
objects 159
248

	Essentials of the Java Programming Language
	Contents
	1. Compile and Run a Simple Program
	Set Up Your Computer
	Compile the Program
	Run the Program
	Code Comments
	Double Slashes
	C-Style Comments
	Doc Comments

	API Documentation
	Exercises

	2. Building Applications
	Fields and Methods
	Exercises

	3. Building Applets
	Run the Applet
	Applet Structure and Elements
	Extend a Class
	Behavior

	Packages
	Exercises

	4. Building a User Interface
	Class Declaration
	Instance Variables
	Constructor
	Action Listening
	Event Handling
	Main Method
	Exercises: Applets Revisited
	Applet and Application Differences

	5. Building Servlets
	HTML Form
	Servlet Code
	Class and Method Declarations
	Method Implementation

	JavaServer Pages Technology
	HTML Form
	JSP Page

	Exercises

	6. Access and Permissions
	Constructor and Instance Variable Changes
	Method Changes
	System Properties
	File.separatorChar
	Exception Handling
	File Access by Applets
	Grant Applets Permission
	Creating a Policy File
	Run an Applet with a Policy File

	Restrict Applications
	Exercises
	Code for This Lesson
	FileIO Program
	FileIOAppl Program
	FileIOServlet Program
	AppendIO Program

	7. Database Access and Permissions
	Create Database Table
	Database Access by Applications
	Establish a Database Connection
	JDBC Driver
	JDBC-ODBC Bridge with ODBC Driver

	Database Access by Servlets
	Exercises
	Code for This Lesson
	Dba Program
	DbaAppl Program
	DbaOdbAppl Program
	DbaServlet Program

	8. Remote Method Invocation
	About the Example
	Compile the Example
	Start the RMI Registry
	Start the Server
	Run the RMIClient1 Program
	Run the RMIClient2 Program

	RemoteServer Class
	Send Interface
	RMIClient1 Class
	actionPerformed Method
	main Method

	RMIClient2 Class
	actionPerformed Method
	main Method

	Exercises
	Code for This Lesson
	RMIClient1 Program
	RMIClient2 Program
	RemoteServer Program

	9. Socket Communications
	About the Examples
	Example 1: Client-Side Behavior
	Example 1: Server-Side Behavior
	Example 1: Compile and Run
	Example 1: Server-Side Program
	Example 1: Client-Side Program
	Example 2: Multithreaded Server Example

	Code for This Lesson
	SocketClient Program
	SocketServer Program
	SocketThrdServer Program

	10. Object-Oriented Programming
	Classes
	Objects
	Well-Defined Boundaries and Cooperation
	Inheritance and Polymorphism
	Classes
	Fields and Methods
	Global Variables and Methods
	Your Own Classes
	Well-Defined Boundaries and Cooperation
	Inheritance
	Access Levels
	Setting Access Levels
	Organizing Code into Functional Units

	11. User Interfaces Revisited
	Fruit Order Client (RMIClient1)
	Server Program
	View Order Client (RMIClient2)
	Compile and Run the Example
	Fruit Order (RMIClient1) Code
	Instance Variables
	Constructor
	Event Handling
	Cursor Focus
	Converting Strings to Numbers and Back
	Server Program Code
	Send Interface
	RemoteServer Class

	View Order Client (RMIClient2) Code
	Exercises
	Calculations and Pressing Return
	Extra Credit

	Code for This Lesson
	RMIClient1 Program
	RMIClient2 Program
	RMIClient1 Improved Program

	12. Develop the Example
	sendOrder Method
	Other Changes to Server Code
	Maintain and Display a Customer List
	About Collections
	Create a Set
	Access Data in a Set
	Display Data in a Dialog Box

	Exercises
	RemoteServer Program

	13. Internationalization
	Create Keyword and Value Pair Files
	German Translations
	French Translations

	Internationalize Application Text
	Instance Variables
	main Method
	Constructor
	actionPerformed Method

	Internationalize Numbers
	Compile and Run the Application
	Compile
	Start the RMI Registry
	UNIX
	Win32
	Start the Server
	Start the RMIClient1 Program in German
	Start the RMIClient2 Program in French

	Exercises
	RMIClient1
	RMIClient2

	14. Packages and JAR File Format
	Create the Directories
	Declare the Packages
	Make Classes and Fields Accessible
	Change Client Code to Find the Properties Files
	Compile and Run the Example
	Compile
	Start the RMI Registry
	Start the Server
	Start the RMIGermanApp Program
	Start the RMIClient2 Program in French
	Using JAR Files to Deploy
	Fruit Order Set of Files (RMIClient1)
	View Order Set of Files

	Exercises

	A. Code Listings
	RMIClient2
	DataOrder
	Send
	RemoteServer
	RMIFrenchApp
	RMIGermanApp
	RMIEnglishApp
	RMIClientView Program
	RMIClientController Program

	Index

